Suppr超能文献

泊松-玻尔兹曼方程的自适应有限元建模技术

ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION.

作者信息

Holst Michael, McCammon James Andrew, Yu Zeyun, Zhou Youngcheng, Zhu Yunrong

机构信息

Department of Mathematics, University of California San Diego, La Jolla CA 92093, Department of Physics, University of California San Diego, La Jolla CA 92093, Department of Chemistry & Biochemistry, University of California San Diego, La Jolla CA 92093, Center for Theoretical Biological Physics (CTBP), University of California San Diego, La Jolla CA 92093, National Biomedical Computational Resource (NBCR), University of California San Diego, La Jolla CA 92093, Howard Hughes Medical Institute (HHMI), University of California San Diego, La Jolla CA 92093.

出版信息

Commun Comput Phys. 2012;11(1):179-214. doi: 10.4208/cicp.081009.130611a.

Abstract

We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L(∞) estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme are demonstrated with FETK through comparisons with the original regularization approach for a model problem. The convergence and accuracy of the overall AFEM algorithm is also illustrated by numerical approximation of electrostatic solvation energy for an insulin protein.

摘要

我们考虑为非线性泊松 - 玻尔兹曼方程(PBE)设计一种有效且可靠的自适应有限元方法(AFEM)。我们首先研究Chen、Holst和Xu最近基于去除生物分子内部奇异静电势而提出的连续问题的两项正则化技术;该技术使得泊松 - 玻尔兹曼方程的首个完整解和逼近理论得以发展,首个可证明收敛的离散化得以实现,并且还促成了一种可证明收敛的AFEM的发展。然而,在实际实现中,这种两项正则化表现出数值不稳定性。因此,我们研究这种正则化技术的一种变体,它可以被证明对这种不稳定性不太敏感。我们为连续正则化问题以及伽辽金有限元逼近建立了先验估计和其他基本结果。我们表明新方法产生的正则化连续和离散问题具有与原始正则化相同的数学优势。然后我们为新的正则化问题设计了一种AFEM方案,并通过证明误差的收缩结果表明所得的AFEM方案是准确且可靠的。这个结果是针对非线性椭圆问题的此类首批结果之一,它基于使用连续和离散的先验(L(\infty))估计来建立拟正交性。为了为AFEM算法提供高质量的几何模型作为输入,我们还描述了一类专门为构建生物分子结构网格而设计的保特征自适应网格生成算法,该算法基于分子表面的固有局部结构张量。本文中描述的所有算法都在加利福尼亚大学圣地亚哥分校开发和维护的有限元工具包(FETK)中实现。通过与模型问题的原始正则化方法进行比较,FETK展示了新正则化方案的稳定性优势。胰岛素蛋白静电溶剂化能的数值逼近也说明了整体AFEM算法的收敛性和准确性。

相似文献

引用本文的文献

10
Variational Implicit Solvation with Poisson-Boltzmann Theory.基于泊松-玻尔兹曼理论的变分隐式溶剂化
J Chem Theory Comput. 2014 Apr 8;10(4):1454-1467. doi: 10.1021/ct401058w. Epub 2014 Feb 21.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验