Suppr超能文献

基于介孔PbO-ZnO纳米复合材料的高选择性氢气传感器

High-Selectivity Hydrogen Gas Sensors based on Mesoporous PbO-ZnO Nanocomposites.

作者信息

Fegade Umesh, Alshahrani Thamraa, Wu Ren-Jang, Lin Fan-Hsuan, Chang Xu-Jia, Yuan Shuo-Huang, Al-Ahmed Amir, Khan Firoz, Haq Bashirul, Afzaal Mohammad

机构信息

Department of Chemistry, Bhusawal Arts, Science and P. O. Nahata Commerce College, Bhusawal, 425201, MH, India.

Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.

出版信息

Chem Asian J. 2024 Aug 19;19(16):e202300575. doi: 10.1002/asia.202300575. Epub 2023 Oct 4.

Abstract

Hydrogen heralded as a promising renewable and environmentally friendly energy carrier, carries inherent risks owing to its highly flammable nature. A mere 4 % concentration of hydrogen in the air can trigger an explosion. To counteract this peril, a composite material comprising PbO-ZnO (2 : 1) was synthesized, characterized, and subsequently employed to fabricate a hydrogen sensing device. Various analytical tools were used to characterize as-deposited materials, including X-ray diffraction, Scanning electron microscopy /Energy Dispersive X-ray Spectroscopy, Transmission electron microscopy UV-Vis Reflectance Spectroscopy and Fourier-transform infrared spectroscopy. The device exhibited favorable properties, such as good selectivity, stability, and a low detection limit for hydrogen. At ambient room temperature, the device demonstrated a sensing signal reaching 468.7, with a response time (T90) of 155 seconds and a recovery time (Tr90) of 69 seconds when exposed to a hydrogen concentration of 5 ppm. This performance underscores the device's rapid and effective response to hydrogen exposure. Moreover, the PbOX-ZnO (2 : 1) composite-based device exhibited a detection limit of 2.4 ppm, functioning accurately within a linear range spanning from 5 ppm to 50 ppm. This capability confirms its precision in accurately detecting hydrogen concentrations within this designated range.

摘要

氢气被誉为一种有前景的可再生且环保的能量载体,但因其高度易燃的性质而存在固有风险。空气中仅4%的氢气浓度就能引发爆炸。为了应对这一危险,合成了一种由PbO-ZnO(2∶1)组成的复合材料,对其进行了表征,随后用于制造氢气传感装置。使用了各种分析工具来表征沉积后的材料,包括X射线衍射、扫描电子显微镜/能量色散X射线光谱、透射电子显微镜、紫外-可见反射光谱和傅里叶变换红外光谱。该装置表现出良好的性能,如良好的选择性、稳定性以及对氢气的低检测限。在环境室温下,当暴露于5 ppm的氢气浓度时,该装置的传感信号达到468.7,响应时间(T90)为155秒,恢复时间(Tr90)为69秒。这一性能强调了该装置对氢气暴露的快速有效响应。此外,基于PbOX-ZnO(2∶1)复合材料的装置检测限为2.4 ppm,在5 ppm至50 ppm的线性范围内能准确运行。这一能力证实了其在该指定范围内准确检测氢气浓度的精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验