Suppr超能文献

电压门控钾通道 K1.3 的结构:失活构象的深入了解及与治疗先导物的结合。

Structure of the voltage-gated potassium channel K1.3: Insights into the inactivated conformation and binding to therapeutic leads.

机构信息

LKCMedicine-ICESing Ion Channel Platform, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.

Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.

出版信息

Channels (Austin). 2023 Dec;17(1):2253104. doi: 10.1080/19336950.2023.2253104.

Abstract

The voltage-gated potassium channel K1.3 is an important therapeutic target for the treatment of autoimmune and neuroinflammatory diseases. The recent structures of K1.3, Shaker-IR (wild-type and inactivating W434F mutant) and an inactivating mutant of rat K1.2-K2.1 paddle chimera (KChim-W362F+S367T+V377T) reveal that the transition of voltage-gated potassium channels from the open-conducting conformation into the non-conducting inactivated conformation involves the rupture of a key intra-subunit hydrogen bond that tethers the selectivity filter to the pore helix. Breakage of this bond allows the side chains of residues at the external end of the selectivity filter (Tyr447 and Asp449 in K1.3) to rotate outwards, dilating the outer pore and disrupting ion permeation. Binding of the peptide dalazatide (ShK-186) and an antibody-ShK fusion to the external vestibule of K1.3 narrows and stabilizes the selectivity filter in the open-conducting conformation, although K efflux is blocked by the peptide occluding the pore through the interaction of ShK-Lys22 with the backbone carbonyl of K1.3-Tyr447 in the selectivity filter. Electrophysiological studies on ShK and the closely-related peptide HmK show that ShK blocks K1.3 with significantly higher potency, even though molecular dynamics simulations show that ShK is more flexible than HmK. Binding of the anti-K1.3 nanobody A0194009G09 to the turret and residues in the external loops of the voltage-sensing domain enhances the dilation of the outer selectivity filter in an exaggerated inactivated conformation. These studies lay the foundation to further define the mechanism of slow inactivation in K channels and can help guide the development of future K1.3-targeted immuno-therapeutics.

摘要

电压门控钾通道 K1.3 是治疗自身免疫和神经炎症性疾病的重要治疗靶点。最近的 K1.3 结构、Shaker-IR(野生型和失活 W434F 突变体)以及失活的大鼠 K1.2-K2.1 桨状嵌合体(KChim-W362F+S367T+V377T)突变体的结构揭示,电压门控钾通道从开放传导构象向非传导失活构象的转变涉及到一个关键的亚基内氢键的断裂,该氢键将选择性过滤器与孔螺旋连接起来。该键的断裂允许选择性过滤器外端的侧链残基(K1.3 中的 Tyr447 和 Asp449)向外旋转,扩张外孔并破坏离子渗透。肽 dalazatide(ShK-186)和抗体-ShK 融合物与 K1.3 的外前庭结合,使选择性过滤器在开放传导构象中变窄并稳定,尽管肽通过 ShK-Lys22 与选择性过滤器中的 K1.3-Tyr447 骨架羰基的相互作用阻塞孔,从而阻止 K 外流。ShK 和密切相关的肽 HmK 的电生理学研究表明,ShK 对 K1.3 的阻断作用具有更高的效力,尽管分子动力学模拟表明 ShK 比 HmK 更具灵活性。抗 K1.3 纳米抗体 A0194009G09 与电压感应域的炮塔和外部环中的残基结合,增强了外选择性过滤器在夸张失活构象中的扩张。这些研究为进一步确定 K 通道慢失活的机制奠定了基础,并有助于指导未来针对 K1.3 的免疫治疗药物的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f154/10496531/f88d81517e17/KCHL_A_2253104_UF0001_OC.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验