Gao Xuehao, Du Shaoyi, Yang Yang
Institute of Artificial Intelligence and Robotics, National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, Xi'an Jiaotong University, Xi'an, 710049, Shanxi, China.
School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shanxi, China.
Neural Netw. 2023 Oct;167:551-558. doi: 10.1016/j.neunet.2023.07.051. Epub 2023 Aug 22.
In the 3D skeleton-based action recognition task, learning rich spatial and temporal motion patterns from body joints are two foundational yet under-explored problems. In this paper, we propose two methods for improving these problems: (I) a novel glimpse-focus action recognition strategy that captures multi-range pose features from the whole body and key body parts jointly; (II) a powerful temporal feature extractor JD-TC that enriches trajectory features by inferring different inter-frame correlations for different joints. By coupling these two proposals, we develop a powerful skeleton-based action recognition system that extracts rich pose and trajectory features from a skeleton sequence and outperforms previous state-of-the-art methods on three large-scale datasets.
在基于三维骨骼的动作识别任务中,从身体关节学习丰富的空间和时间运动模式是两个基本但尚未充分探索的问题。在本文中,我们提出了两种方法来改进这些问题:(I)一种新颖的瞥见聚焦动作识别策略,该策略联合从全身和关键身体部位捕获多范围姿态特征;(II)一种强大的时间特征提取器JD-TC,它通过为不同关节推断不同的帧间相关性来丰富轨迹特征。通过结合这两个提议,我们开发了一个强大的基于骨骼的动作识别系统,该系统从骨骼序列中提取丰富的姿态和轨迹特征,并在三个大规模数据集上优于先前的最先进方法。