Suppr超能文献

基于骨架的动作识别的增强时空图卷积网络。

Enhanced Spatial and Extended Temporal Graph Convolutional Network for Skeleton-Based Action Recognition.

机构信息

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221008, China.

Jiangsu Province Xuzhou Technician Institute, Xuzhou 221151, China.

出版信息

Sensors (Basel). 2020 Sep 15;20(18):5260. doi: 10.3390/s20185260.

Abstract

In the skeleton-based human action recognition domain, the spatial-temporal graph convolution networks (ST-GCNs) have made great progress recently. However, they use only one fixed temporal convolution kernel, which is not enough to extract the temporal cues comprehensively. Moreover, simply connecting the spatial graph convolution layer (GCL) and the temporal GCL in series is not the optimal solution. To this end, we propose a novel enhanced spatial and extended temporal graph convolutional network (EE-GCN) in this paper. Three convolution kernels with different sizes are chosen to extract the discriminative temporal features from shorter to longer terms. The corresponding GCLs are then concatenated by a powerful yet efficient one-shot aggregation (OSA) + effective squeeze-excitation (eSE) structure. The OSA module aggregates the features from each layer once to the output, and the eSE module explores the interdependency between the channels of the output. Besides, we propose a new connection paradigm to enhance the spatial features, which expand the serial connection to a combination of serial and parallel connections by adding a spatial GCL in parallel with the temporal GCLs. The proposed method is evaluated on three large scale datasets, and the experimental results show that the performance of our method exceeds previous state-of-the-art methods.

摘要

在基于骨骼的人体动作识别领域,时空图卷积网络(ST-GCN)最近取得了很大进展。然而,它们仅使用一个固定的时间卷积核,这不足以全面提取时间线索。此外,简单地将空间图卷积层(GCL)和时间 GCL 串联并不是最优的解决方案。为此,我们在本文中提出了一种新颖的增强空间和扩展时间图卷积网络(EE-GCN)。选择了三个不同大小的卷积核,从较短到较长的时间提取有区别的时间特征。然后,通过强大而有效的一次聚合(OSA)+有效的挤压激励(eSE)结构将对应的 GCL 连接起来。OSA 模块将来自每一层的特征一次性聚合到输出中,而 eSE 模块则探索输出通道之间的相互依赖关系。此外,我们提出了一种新的连接范例来增强空间特征,通过在时间 GCL 并行添加一个空间 GCL,将串行连接扩展为串行和并行的组合。该方法在三个大规模数据集上进行了评估,实验结果表明,我们的方法的性能超过了以前的最先进方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb7/7571203/2101f90e0f35/sensors-20-05260-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验