School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
BMC Bioinformatics. 2023 Sep 12;24(1):338. doi: 10.1186/s12859-023-05455-1.
The human gut microbiome (HGM), consisting of trillions of microorganisms, is crucial to human health. Adverse drug use is one of the most important causes of HGM disorder. Thus, it is necessary to identify drugs or compounds with anti-commensal effects on HGM in the early drug discovery stage. This study proposes a novel anti-commensal effects classification using a machine learning method and optimal molecular features. To improve the prediction performance, we explored combinations of six fingerprints and three descriptors to filter the best characterization as molecular features.
The final consensus model based on optimal features yielded the F1-score of 0.725 ± 0.014, ACC of 82.9 ± 0.7%, and AUC of 0.791 ± 0.009 for five-fold cross-validation. In addition, this novel model outperformed the prior studies by using the same algorithm. Furthermore, the important chemical descriptors and misclassified anti-commensal compounds are analyzed to better understand and interpret the model. Finally, seven structural alerts responsible for the chemical anti-commensal effect are identified, implying valuable information for drug design.
Our study would be a promising tool for screening anti-commensal compounds in the early stage of drug discovery and assessing the potential risks of these drugs in vivo.
人类肠道微生物组(HGM)由数万亿微生物组成,对人类健康至关重要。药物滥用是 HGM 紊乱的最重要原因之一。因此,有必要在早期药物发现阶段识别对 HGM 具有抗共生作用的药物或化合物。本研究提出了一种使用机器学习方法和最佳分子特征进行抗共生作用分类的新方法。为了提高预测性能,我们探索了六种指纹和三种描述符的组合,以筛选出最佳特征作为分子特征。
基于最优特征的最终共识模型在五重交叉验证中产生了 0.725 ± 0.014 的 F1 分数、82.9 ± 0.7%的 ACC 和 0.791 ± 0.009 的 AUC。此外,该新模型通过使用相同的算法优于先前的研究。此外,还分析了重要的化学描述符和分类错误的抗共生化合物,以更好地理解和解释模型。最后,确定了七个负责化学抗共生作用的结构警报,这意味着为药物设计提供了有价值的信息。
我们的研究将成为药物发现早期筛选抗共生化合物和评估这些药物体内潜在风险的有前途的工具。