Chinese Center of Exercise Epidemiology, Northeast Normal University, Renmin Street, Changchun, 130024, Jilin, China.
AI Group, Intelligent Lancet LLC, 2108 N Street, Sacramento, 95816, CA, USA.
BMC Med Inform Decis Mak. 2023 Sep 11;23(1):179. doi: 10.1186/s12911-023-02285-2.
Addressing the current complexities, costs, and adherence issues in the detection of forward head posture (FHP), our study conducted an exhaustive epidemiologic investigation, incorporating a comprehensive posture screening process for each participant in China. This research introduces an avant-garde, machine learning-based non-contact method for the accurate discernment of FHP. Our approach elevates detection accuracy by leveraging body landmarks identified from human images, followed by the application of a genetic algorithm for precise feature identification and posture estimation. Observational data corroborates the superior efficacy of the Extra Tree Classifier technique in FHP detection, attaining an accuracy of 82.4%, a specificity of 85.5%, and a positive predictive value of 90.2%. Our model affords a rapid, effective solution for FHP identification, spotlighting the transformative potential of the convergence of feature point recognition and genetic algorithms in non-contact posture detection. The expansive potential and paramount importance of these applications in this niche field are therefore underscored.
针对目前在检测前伸头姿势(FHP)中存在的复杂性、成本和依从性问题,我们的研究在中国对每个参与者进行了全面的姿势筛查,开展了详尽的流行病学调查。本研究提出了一种基于机器学习的先进的非接触式方法,用于准确识别 FHP。我们的方法通过利用从人体图像中识别出的身体地标,然后应用遗传算法进行精确的特征识别和姿势估计,提高了检测的准确性。观察数据证实了 Extra Tree Classifier 技术在 FHP 检测中的优越效果,达到了 82.4%的准确性、85.5%的特异性和 90.2%的阳性预测值。我们的模型为 FHP 的识别提供了一种快速有效的解决方案,突出了特征点识别和遗传算法在非接触式姿势检测中的融合所具有的变革潜力。因此,强调了这些应用在这一特定领域的广泛潜力和重要性。