Suppr超能文献

利用电子健康记录数据挖掘进行心力衰竭亚型分类。

Use of electronic health record data mining for heart failure subtyping.

机构信息

Division of Medicine, University of Turku, Kiinamyllynkatu 10, Turku, FI-20520, Finland.

Turku University Hospital, Kiinamyllynkatu 4-8, Box 52, Turku, FI-20521, Finland.

出版信息

BMC Res Notes. 2023 Sep 11;16(1):208. doi: 10.1186/s13104-023-06469-x.

Abstract

OBJECTIVE

To assess whether electronic health record (EHR) data text mining can be used to improve register-based heart failure (HF) subtyping. EHR data of 43,405 individuals from two Finnish hospital biobanks were mined for unstructured text mentions of ejection fraction (EF) and validated against clinical assessment in two sets of 100 randomly selected individuals. Structured laboratory data was then incorporated for a categorization by HF subtype (HF with mildly reduced EF, HFmrEF; HF with preserved EF, HFpEF; HF with reduced EF, HFrEF; and no HF).

RESULTS

In 86% of the cases, the algorithm-identified EF belonged to the correct HF subtype range. Sensitivity, specificity, PPV and NPV of the algorithm were 94-100% for HFrEF, 85-100% for HFmrEF, and 96%, 67%, 53% and 98% for HFpEF. Survival analyses using the traditional diagnosis of HF were in concordance with the algorithm-based ones. Compared to healthy individuals, mortality increased from HFmrEF (hazard ratio [HR], 1.91; 95% confidence interval [CI], 1.24-2.95) to HFpEF (2.28; 1.80-2.88) to HFrEF group (2.63; 1.97-3.50) over a follow-up of 1.5 years. We conclude that quantitative EF data can be efficiently extracted from EHRs and used with laboratory data to subtype HF with reasonable accuracy, especially for HFrEF.

摘要

目的

评估电子健康记录(EHR)数据文本挖掘是否可用于改进基于注册的心力衰竭(HF)亚型分类。从两个芬兰医院生物库的 43405 个人的 EHR 数据中挖掘关于射血分数(EF)的非结构化文本提及,并在两组 100 名随机选择的个体中进行临床评估进行验证。然后,将结构化实验室数据纳入心力衰竭亚型(射血分数轻度降低的心力衰竭,HFmrEF;射血分数保留的心力衰竭,HFpEF;射血分数降低的心力衰竭,HFrEF;以及无心力衰竭)的分类。

结果

在 86%的情况下,算法识别的 EF 属于正确的 HF 亚型范围。该算法对 HFrEF 的敏感性、特异性、PPV 和 NPV 为 94-100%,对 HFmrEF 的为 85-100%,对 HFpEF 的为 96%、67%、53%和 98%。使用传统的 HF 诊断进行的生存分析与基于算法的分析一致。与健康个体相比,HFmrEF(危险比[HR],1.91;95%置信区间[CI],1.24-2.95)、HFpEF(2.28;1.80-2.88)和 HFrEF 组(2.63;1.97-3.50)的死亡率在 1.5 年的随访中逐渐增加。我们得出结论,从 EHR 中可以有效地提取定量 EF 数据,并结合实验室数据以合理的准确性对 HF 进行亚型分类,尤其是对 HFrEF。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5065/10496250/8c072f0554f1/13104_2023_6469_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验