Wang Luyao, Li Xin, Qian Yongxin, Li Wang, Xiong Tianshun, Tao Yang, Li You, Li Junwei, Luo Yubo, Jiang Qinghui, Yang Junyou
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
Small. 2024 Jan;20(2):e2304311. doi: 10.1002/smll.202304311. Epub 2023 Sep 11.
Due to the increased integration and miniaturization of electronic devices, traditional electronic packaging materials, such as epoxy resin (EP), cannot solve electromagnetic interference (EMI) in electronic devices. Thus, the development of multifunctional electronic packaging materials with superior electromagnetic wave absorption (EMA), high heat dissipation, and flame retardancy is critical for current demand. This study employs an in-situ growth method to load layered double hydroxides (LDH) onto transition metal carbides (MXene), synthesizing a novel composite material (MXene@LDH). MXene@LDH possesses a sandwich structure and exhibits excellent EMA performance, thermal conductivity, and flame retardancy. By adjusting the load of LDH, under the synergistic effect of multiple factors, such as dielectric and polarization losses, this work achieves an EMA material with a remarkable minimum reflection loss (RL) of -52.064 dB and a maximum effective absorption bandwidth (EAB) of 4.5 GHz. Furthermore, MXene@LDH emerges a bridging effect in EP, namely MXene@LDH/EP, leading to a 118.75% increase in thermal conductivity compared to EP. Simultaneously, MXene@LDH/EP contributes to the enhanced flame retardancy compared to EP, resulting in a 46.5% reduction in the total heat release (THR). In summary, this work provides a promising candidate advanced electronic packaging material for high-power density electronic packaging.
由于电子设备集成度的提高和小型化,传统的电子封装材料,如环氧树脂(EP),无法解决电子设备中的电磁干扰(EMI)问题。因此,开发具有优异电磁波吸收(EMA)、高散热性和阻燃性的多功能电子封装材料对于当前的需求至关重要。本研究采用原位生长法将层状双氢氧化物(LDH)负载到过渡金属碳化物(MXene)上,合成了一种新型复合材料(MXene@LDH)。MXene@LDH具有三明治结构,表现出优异的EMA性能、热导率和阻燃性。通过调整LDH的负载量,在介电损耗和极化损耗等多种因素的协同作用下,本工作制备出一种具有显著最小反射损耗(RL)为-52.064 dB和最大有效吸收带宽(EAB)为4.5 GHz的EMA材料。此外,MXene@LDH在EP中产生了桥接效应,即MXene@LDH/EP,与EP相比,其热导率提高了118.75%。同时,与EP相比,MXene@LDH/EP的阻燃性增强,总热释放(THR)降低了46.5%。综上所述,本工作为高功率密度电子封装提供了一种有前景的先进电子封装材料候选物。