Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York 11794, United States.
Instituto de Química, Universidade de Brasília, Distrito Federal, Brasília 70910-900, Brazil.
J Chem Inf Model. 2023 Sep 25;63(18):5803-5822. doi: 10.1021/acs.jcim.3c01031. Epub 2023 Sep 12.
Structure-based methods that employ principles of de novo design can be used to construct small organic molecules from scratch using pre-existing fragment libraries to sample chemical space and are an important class of computational algorithms for drug-lead discovery. Here, we present a powerful new design method for DOCK6 that employs a Descriptor-Driven De Novo strategy (termed D3N) in which user-defined cheminformatics descriptors (and their target ranges) are calculated at each layer of growth using the open-source toolkit RDKit. The objective is to tailor ligand growth toward desirable regions of chemical space. The approach was extensively validated through: (1) comparison of cheminformatics descriptors computed using the new DOCK6/RDKit interface versus the standard Python/RDKit installation, (2) examination of descriptor distributions generated using D3N growth under different conditions (target ranges and environments), and (3) construction of ligands with very tight (pinpoint) descriptor ranges using clinically relevant compounds as a reference. Our testing confirms that the new DOCK6/RDKit integration is robust, showcases how the new D3N routines can be used to direct sampling around user-defined chemical spaces, and highlights the utility of on-the-fly descriptor calculations for ligand design to important drug targets.
基于结构的方法利用从头设计的原理,可以使用预先存在的片段库从零开始构建小分子有机化合物,从而对化学空间进行采样,这是药物先导物发现的一类重要计算算法。在这里,我们提出了一种新的强大的 DOCK6 设计方法,该方法采用了一种描述符驱动的从头设计策略(称为 D3N),其中用户定义的化学描述符(及其目标范围)在使用开源工具 RDKit 进行生长的每个层中进行计算。其目的是将配体的生长引导到理想的化学空间区域。该方法通过以下方式进行了广泛验证:(1)使用新的 DOCK6/RDKit 接口计算的化学描述符与标准 Python/RDKit 安装之间的比较;(2)使用 D3N 在不同条件(目标范围和环境)下生成的描述符分布的检查;(3)使用具有非常紧密(精确)描述符范围的临床相关化合物作为参考构建配体。我们的测试证实了新的 DOCK6/RDKit 集成是稳健的,展示了新的 D3N 例程如何用于围绕用户定义的化学空间进行采样,并且突出了实时描述符计算在针对重要药物靶标的配体设计中的实用性。