Yang Xiaoyu, Wang Xinjiang, Faizan Muhammad, He Xin, Zhang Lijun
State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China.
Nanoscale. 2024 Feb 8;16(6):2913-2922. doi: 10.1039/d3nr05805k.
Moiré superlattices (MSLs) in twisted two-dimensional van der Waals materials feature twist-angle-dependent crystal symmetry and strong optical nonlinearities. By adjusting the twist angle in bilayer van der Waals materials, the second-harmonic generation (SHG) can be controlled. Here, we focus on exploring the electronic and SHG properties of MSLs in 2D bilayer transition metal dichalcogenides (TMDs) with different twist angles through first-principles calculations. We constructed MSL structures of five TMD materials, including three single-phase materials (MoS, WS, and MoSe) and two heterojunctions (MoS/MoSe and MoS/WS) with twist angles of 9.4°, 13.2°, 21.8°, 32.2°, and 42.1° without lattice mismatch. Our findings demonstrate a consistent variation in the SHG susceptibility among different TMD MSLs as a response to twist-angle changes. The underlying reason for the twist-angle dependence of SHG is that the twist angle regulates the interlayer coupling strength, affecting the optical band gap of MSLs and subsequently tuning the SHG susceptibility. Through a comparison of the static SHG susceptibility values, we identified the twist angle of 9.4° as the configuration that yields the highest SHG susceptibility ( 358.5 pm V for the 9.4° MoSe MSL). This value is even twice that of the monolayer (173.3 pm V for monolayer MoSe) and AA'-stacked bilayer structures (139.8 pm V for AA' MoSe). This high SHG susceptibility is attributed to the strong interlayer coupling in the 9.4° MSL, which enhances the valence band energy (contributed by the antibonding orbitals of chalcogen-p and transition metal-d) and consequently leads to a small optical band gap, thus improving the optical transitions. The findings of this study provide a straightforward way to improve the SHG performance of bilayer TMDs and also throw light on the sensitive relationship between the twist angle, band structure and SHG properties of TMD MSLs.
扭曲二维范德华材料中的莫尔超晶格(MSLs)具有与扭曲角相关的晶体对称性和强光学非线性。通过调整双层范德华材料中的扭曲角,可以控制二次谐波产生(SHG)。在此,我们通过第一性原理计算,专注于探索具有不同扭曲角的二维双层过渡金属二卤化物(TMDs)中MSLs的电子和SHG特性。我们构建了五种TMD材料的MSL结构,包括三种单相材料(MoS、WS和MoSe)以及两种异质结(MoS/MoSe和MoS/WS),扭曲角分别为9.4°、13.2°、21.8°、32.2°和42.1°,且无晶格失配。我们的研究结果表明,不同TMD MSLs的SHG极化率随扭曲角变化呈现出一致的变化。SHG对扭曲角依赖的根本原因是扭曲角调节了层间耦合强度,影响了MSLs的光学带隙,进而调整了SHG极化率。通过比较静态SHG极化率值,我们确定9.4°的扭曲角是产生最高SHG极化率的构型(9.4°的MoSe MSL为358.5 pm V)。该值甚至是单层(单层MoSe为173.3 pm V)和AA'堆叠双层结构(AA' MoSe为139.8 pm V)的两倍。这种高SHG极化率归因于9.4° MSL中强烈的层间耦合,它增强了价带能量(由硫族元素p和过渡金属d的反键轨道贡献),从而导致较小的光学带隙,进而改善了光学跃迁。本研究结果为提高双层TMDs的SHG性能提供了一种直接的方法,也揭示了TMD MSLs的扭曲角、能带结构和SHG特性之间的敏感关系。