Tian Jiaming, Rao Yuan, Shi Wenhui, Yang Jiawei, Ning Wenjie, Li Haoyu, Yao Yonggang, Zhou Haoshen, Guo Shaohua
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, 210093, P. R. China.
Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China.
Angew Chem Int Ed Engl. 2023 Oct 26;62(44):e202310894. doi: 10.1002/anie.202310894. Epub 2023 Sep 25.
Li-O battery (LOB) is a promising "beyond Li-ion" technology with ultrahigh theoretical energy density (3457 Wh kg ), while currently impeded by the sluggish cathodic kinetics of the reversible gas-solid reaction between O and Li O . Despite many catalysts are developed for accelerating the conversion process, the lack of design guidance for achieving high performance makes catalysts exploring aleatory. The Sabatier principle is an acknowledged theory connecting the scaling relationship with heterogeneous catalytic activity, providing a tradeoff strategy for the topmost performance. Herein, a series of catalysts with wide-distributed d-band centers (i.e., wide range of adsorption strength) are elaborately constructed via high-entropy strategy, enabling an in-depth study of the Sabatier relations in electrocatalysts for LOBs. A volcano-type correlation of d-band center and catalytic activity emerges. Both theoretical and experimental results indicate that a moderate d-band center with appropriate adsorption strength propels the catalysts up to the top. As a demonstration of concept, the LOB using FeCoNiMnPtIr as catalyst provides an exceptional energy conversion efficiency of over 80 %, and works steadily for 2000 h with a high fixed specific capacity of 4000 mAh g . This work certifies the applicability of Sabatier principle as a guidance for designing advanced heterogeneous catalysts assembled in LOBs.
锂-氧电池(LOB)是一种很有前景的“超越锂离子”技术,具有超高的理论能量密度(3457 Wh kg),但目前受到氧气与过氧化锂之间可逆气-固反应缓慢的阴极动力学的阻碍。尽管已经开发了许多催化剂来加速转化过程,但缺乏实现高性能的设计指导使得催化剂的探索具有随机性。萨巴蒂尔原理是一种公认的将标度关系与多相催化活性联系起来的理论,为实现最佳性能提供了一种权衡策略。在此,通过高熵策略精心构建了一系列具有广泛分布的d带中心(即广泛的吸附强度范围)的催化剂,从而能够深入研究用于锂-氧电池的电催化剂中的萨巴蒂尔关系。出现了d带中心与催化活性的火山型相关性。理论和实验结果均表明,具有适当吸附强度的适度d带中心可将催化剂性能提升至最佳。作为概念验证,使用FeCoNiMnPtIr作为催化剂的锂-氧电池提供了超过80%的卓越能量转换效率,并以4000 mAh g的高固定比容量稳定工作2000 小时。这项工作证明了萨巴蒂尔原理作为设计组装在锂-氧电池中的先进多相催化剂的指导的适用性。