Department of Radiology, Division of Musculoskeletal Imaging and Intervention, University of Washington, UW Radiology-Roosevelt Clinic, 4245 Roosevelt Way NE, Box, Seattle, WA, 354755, USA.
Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA.
Skeletal Radiol. 2024 Mar;53(3):537-545. doi: 10.1007/s00256-023-04447-9. Epub 2023 Sep 12.
The rotator cuff (RC) is a crucial anatomical element within the shoulder joint, facilitating an extensive array of motions while maintaining joint stability. Comprised of the subscapularis, infraspinatus, supraspinatus, and teres minor muscles, the RC plays an integral role in shoulder functionality. RC injuries represent prevalent, incapacitating conditions that impose a substantial impact on approximately 8% of the adult population in the USA. Segmentation of these muscles provides valuable anatomical information for evaluating muscle quality and allows for better treatment planning.
We developed a model based on residual deep convolutional encoder-decoder U-net to segment RC muscles on oblique sagittal T1-weighted images MRI. Our data consisted of shoulder MRIs from a cohort of 157 individuals, consisting of individuals without RC tendon tear (N=79) and patients with partial RC tendon tear (N=78). We evaluated different modeling approaches. The performance of the models was evaluated by calculating the Dice coefficient on the hold out test set.
The best-performing model's median Dice coefficient was measured to be 89% (Q1:85%, Q3:96%) for the supraspinatus, 86% (Q1:82%, Q3:88%) for the subscapularis, 86% (Q1:82%, Q3:90%) for the infraspinatus, and 78% (Q1:70%, Q3:81%) for the teres minor muscle, indicating a satisfactory level of accuracy in the model's predictions.
Our computational models demonstrated the capability to delineate RC muscles with a level of precision akin to that of experienced radiologists. As hypothesized, the proposed algorithm exhibited superior performance when segmenting muscles with well-defined boundaries, including the supraspinatus, subscapularis, and infraspinatus muscles.
肩袖(RC)是肩关节内至关重要的解剖结构,它在维持关节稳定性的同时,使肩部能够进行广泛的运动。RC 由肩胛下肌、冈下肌、冈上肌和小圆肌组成,在肩部功能中起着重要作用。RC 损伤是常见的、使人丧失能力的疾病,在美国约有 8%的成年人受到影响。这些肌肉的分割为评估肌肉质量提供了有价值的解剖信息,并允许更好的治疗计划。
我们开发了一种基于残差深度卷积编码器-解码器 U 型网络的模型,用于对斜矢状 T1 加权图像 MRI 上的 RC 肌肉进行分割。我们的数据包括来自 157 名个体的肩部 MRI,其中包括没有 RC 肌腱撕裂的个体(N=79)和部分 RC 肌腱撕裂的患者(N=78)。我们评估了不同的建模方法。通过在保留测试集上计算 Dice 系数来评估模型的性能。
表现最好的模型的平均 Dice 系数为 89%(Q1:85%,Q3:96%),用于冈上肌;86%(Q1:82%,Q3:88%),用于肩胛下肌;86%(Q1:82%,Q3:90%),用于冈下肌;78%(Q1:70%,Q3:81%),用于小圆肌,这表明模型的预测具有令人满意的准确性。
我们的计算模型证明了能够以类似于经验丰富的放射科医生的精度来描绘 RC 肌肉。正如假设的那样,当分割具有明确边界的肌肉时,包括冈上肌、肩胛下肌和冈下肌,所提出的算法表现出更好的性能。