Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
Institut Curie, PSL Research University, CNRS, UMR 168, Paris, France.
Nat Commun. 2023 Sep 12;14(1):5612. doi: 10.1038/s41467-023-41273-y.
Protrusions at the leading-edge of a cell play an important role in sensing the extracellular cues during cellular spreading and motility. Recent studies provided indications that these protrusions wrap (coil) around the extracellular fibers. However, the physics of this coiling process, and the mechanisms that drive it, are not well understood. We present a combined theoretical and experimental study of the coiling of cellular protrusions on fibers of different geometry. Our theoretical model describes membrane protrusions that are produced by curved membrane proteins that recruit the protrusive forces of actin polymerization, and identifies the role of bending and adhesion energies in orienting the leading-edges of the protrusions along the azimuthal (coiling) direction. Our model predicts that the cell's leading-edge coils on fibers with circular cross-section (above some critical radius), but the coiling ceases for flattened fibers of highly elliptical cross-section. These predictions are verified by 3D visualization and quantitation of coiling on suspended fibers using Dual-View light-sheet microscopy (diSPIM). Overall, we provide a theoretical framework, supported by experiments, which explains the physical origin of the coiling phenomenon.
细胞前缘的突起在细胞伸展和运动过程中感知细胞外线索方面起着重要作用。最近的研究表明,这些突起会缠绕(盘旋)在细胞外纤维周围。然而,这种盘旋过程的物理性质以及驱动它的机制尚不清楚。我们对不同几何形状纤维上细胞突起的盘旋进行了理论和实验的综合研究。我们的理论模型描述了由弯曲的膜蛋白产生的膜突起,这些膜蛋白募集肌动蛋白聚合的突起力,并确定了弯曲和粘附能量在沿着突起的方位角(盘旋)方向定位突起的前缘方面的作用。我们的模型预测,细胞的前缘会在具有圆形横截面的纤维上盘旋(超过某个临界半径),但对于高度椭圆横截面的扁平纤维,盘旋会停止。这些预测通过使用双视图光片显微镜(dual-view light-sheet microscopy,diSPIM)对悬浮纤维上的盘旋进行 3D 可视化和定量得到了验证。总的来说,我们提供了一个理论框架,该框架得到了实验的支持,解释了盘旋现象的物理起源。