Institute of Statistics and Big Data, Renmin University of China, Beijing, China.
Center for Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing, China.
Biometrics. 2023 Dec;79(4):2869-2880. doi: 10.1111/biom.13925. Epub 2023 Sep 12.
Covariate-adaptive randomization methods are widely used in clinical trials to balance baseline covariates. Recent studies have shown the validity of using regression-based estimators for treatment effects without imposing functional form requirements on the true data generation model. These studies have had limitations in certain scenarios; for example, in the case of multiple treatment groups, these studies did not consider additional covariates or assumed that the allocation ratios were the same across strata. To address these limitations, we develop a stratum-common estimator and a stratum-specific estimator under multiple treatments. We derive the asymptotic behaviors of these estimators and propose consistent nonparametric estimators for asymptotic variances. To determine their efficiency, we compare the estimators with the stratified difference-in-means estimator as the benchmark. We find that the stratum-specific estimator guarantees efficiency gains, regardless of whether the allocation ratios across strata are the same or different. Our conclusions were also validated by simulation studies and a real clinical trial example.
协变量自适应随机化方法在临床试验中被广泛用于平衡基线协变量。最近的研究表明,在不对真实数据生成模型施加函数形式要求的情况下,使用基于回归的估计量来估计治疗效果是有效的。这些研究在某些情况下存在局限性;例如,在存在多个治疗组的情况下,这些研究没有考虑其他协变量,或者假设层内的分配比例是相同的。为了解决这些局限性,我们在多种治疗情况下开发了一种层内共同估计量和一种层内特定估计量。我们推导出了这些估计量的渐近性质,并提出了用于渐近方差的一致非参数估计量。为了确定它们的效率,我们将这些估计量与分层均数差估计量作为基准进行比较。我们发现,无论层内的分配比例是否相同,层内特定估计量都能保证效率的提高。我们的结论也通过模拟研究和一个真实的临床试验例子得到了验证。