Department of Biology, University of Oxford, Oxford, UK.
Department of Engineering Science, University of Oxford, Oxford, UK.
J R Soc Interface. 2023 Sep;20(206):20230365. doi: 10.1098/rsif.2023.0365. Epub 2023 Sep 13.
Often overlooked, vibration transmission through the entire body of an animal is an important factor in understanding vibration sensing in animals. To investigate the role of dynamic properties and vibration transmission through the body, we used a modal test and lumped parameter modelling for a spider. The modal test used laser vibrometry data on a tarantula, and revealed five modes of the spider in the frequency range of 20-200 Hz. Our developed and calibrated model took into account the bounce, pitch and roll of the spider body and bounce of all the eight legs. We then performed a parametric study using this calibrated model, varying factors such as mass, inertia, leg stiffness, damping, angle and span to study what effect they had on vibration transmission. The results support that some biomechanical parameters can act as physical constraints on vibration sensing. But also, that the spider may actively control some biomechanical parameters to change the signal intensity it can sense. Furthermore, our analysis shows that the parameter changes in front and back legs have a greater influence on whole system dynamics, so may be of particular importance for active control mechanisms to facilitate biological sensing functions.
通常被忽视的是,振动通过动物整个身体的传递是理解动物振动感知的一个重要因素。为了研究动态特性和通过身体的振动传递的作用,我们对一只蜘蛛进行了模态测试和集中参数建模。模态测试使用了对一只狼蛛的激光测振数据,揭示了蜘蛛在 20-200 Hz 频率范围内的五个模态。我们开发并校准的模型考虑了蜘蛛身体的弹起、俯仰和滚动以及所有八条腿的弹起。然后,我们使用这个经过校准的模型进行了参数研究,改变质量、惯性、腿刚度、阻尼、角度和跨度等因素,研究它们对振动传递的影响。结果表明,一些生物力学参数可以作为振动感知的物理约束。但也表明,蜘蛛可能主动控制一些生物力学参数来改变它能感知的信号强度。此外,我们的分析表明,前腿和后腿的参数变化对整个系统动力学有更大的影响,因此对于主动控制机制来说可能特别重要,以促进生物传感功能。