Lushchikova O V, Reichegger J, Kollotzek S, Zappa F, Mahmoodi-Darian M, Bartolomei M, Campos-Martínez J, González-Lezana T, Pirani F, Scheier P
Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
Department of Physics, Karaj Branch, Islamic Azad University, Karaj, Iran.
Phys Chem Chem Phys. 2023 Sep 27;25(37):25251-25263. doi: 10.1039/d3cp03452f.
Multiply charged superfluid helium nanodroplets are utilized to facilitate the growth of cationic copper clusters (Cu, where = 1-8) that are subsequently solvated with up to 50 H molecules. Production of both pristine and protonated cationic Cu clusters are detected mass spectrometrically. A joint effort between experiment and theory allows us to understand the nature of the interactions determining the bonding between pristine and protonated Cu and Cu cations and molecular hydrogen. The analysis reveals that in all investigated cationic clusters, the primary solvation shell predominantly exhibits a covalent bonding character, which gradually decreases in strength, while for the subsequent shells an exclusive non-covalent behaviour is found. Interestingly, the calculated evaporation energies associated with the first solvation shell markedly surpass thermal values, positioning them within the desirable range for hydrogen storage applications. This comprehensive study not only provides insights into the solvation of pristine and protonated cationic Cu clusters but also sheds light on their unique bonding properties.
多电荷超流氦纳米液滴被用于促进阳离子铜簇(Cu,其中 = 1 - 8)的生长,随后这些铜簇会被多达50个H分子溶剂化。通过质谱检测到了原始的和质子化的阳离子铜簇的产生。实验和理论的共同努力使我们能够理解决定原始的和质子化的Cu和Cu阳离子与分子氢之间键合的相互作用的本质。分析表明,在所有研究的阳离子簇中,第一溶剂化层主要表现出共价键特征,其强度逐渐降低,而对于后续层则发现了排他的非共价行为。有趣的是,与第一溶剂化层相关的计算蒸发能明显超过热值,使其处于储氢应用的理想范围内。这项全面的研究不仅深入了解了原始的和质子化的阳离子铜簇的溶剂化情况,还揭示了它们独特的键合性质。