Suppr超能文献

使用数字糖尿病护理模式实现糖化血红蛋白(HbA1c)目标的2型糖尿病患者画像:来自中国的一项为期12个月的真实世界研究。

Portrait for Type 2 Diabetes with Goal-Achieved HbA1c Using Digital Diabetes Care Model: A Real-World 12-Month Study from China.

作者信息

Li Mingzhen, Zhang Bing, Guo Lichuan, Zhang Yuan, Du Xiaoyan, Wang Bingyi, Xu Zheng, Sun Ning, Chen Ruibin, Han Wanwen, Chen Liming, Song Zhenqiang

机构信息

Department of Endocrinology, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China.

Department of Information Management, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China.

出版信息

Patient Prefer Adherence. 2023 Sep 7;17:2227-2235. doi: 10.2147/PPA.S416121. eCollection 2023.

Abstract

BACKGROUND

Our previous study demonstrated that digital diabetes care model (DDCM) created by multidisciplinary care team (MDCT) can improve glycemic control for patients with diabetes than usual care. Therefore, we aimed to explore long-term glycemic control with DDCM and influencing factors in type 2 diabetic cohort, in order to make a portrait for diabetes with goal-achieved HbA1c in clinics.

METHODS

A total of 1198 outpatients with type 2 diabetes using DDCM for at least 12 months were recruited as a cohort. Medical records and specific DDCM indexes were collected. The influencing factors for glycemic control were explored by multivariate logistic regression analysis, followed by an internal and external validation.

RESULTS

A total of 887 patients were finally included. HbA1c target-achieving rate was increased from 39.83% at baseline to 71.79% after 3-month follow-up. A shorter duration of diabetes, more frequent self-monitoring of blood glucose, lower HbA1c level at baseline, and less frequent emergency out-of-hospital follow-ups were influencing factors for HbA1c <7% at 12-month follow-up. AUC of the prediction model was 0.790, with a sensitivity of 69.7% and specificity of 76.1%. Internal and external validation in patients using the DDCM monitored by MDCT indicated that the DDCM was robust (AUC =0.783 and 0.723, respectively).

CONCLUSION

Our findings made a portrait for T2DM with goal-achieved HbA1c in our DDCM. It is important to recognize associated factors for health providers to make personalized intervention in clinical practice.

摘要

背景

我们之前的研究表明,由多学科护理团队(MDCT)创建的数字糖尿病护理模式(DDCM)比常规护理能更好地改善糖尿病患者的血糖控制。因此,我们旨在探讨DDCM对2型糖尿病队列的长期血糖控制及其影响因素,以便在临床中描绘出实现糖化血红蛋白(HbA1c)目标的糖尿病患者特征。

方法

共招募了1198例使用DDCM至少12个月的2型糖尿病门诊患者作为一个队列。收集病历和特定的DDCM指标。通过多因素逻辑回归分析探讨血糖控制的影响因素,随后进行内部和外部验证。

结果

最终纳入887例患者。HbA1c目标达成率从基线时的39.83%提高到随访3个月后的71.79%。糖尿病病程较短、更频繁的自我血糖监测、基线时较低的HbA1c水平以及较少的急诊院外随访是12个月随访时HbA1c<7%的影响因素。预测模型的曲线下面积(AUC)为0.790,灵敏度为69.7%,特异度为76.1%。在由MDCT监测使用DDCM的患者中进行的内部和外部验证表明,DDCM具有稳健性(AUC分别为0.783和0.723)。

结论

我们的研究结果描绘了在我们的DDCM中实现HbA1c目标的2型糖尿病患者特征。认识相关因素对于医疗服务提供者在临床实践中进行个性化干预很重要。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验