文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于增强癌症免疫治疗的多功能纳米复合材料对肿瘤微环境的调控

Multifunctional nanocomposites modulating the tumor microenvironment for enhanced cancer immunotherapy.

作者信息

Sharma Prashant, Otto Mario

机构信息

Department of Child Health, University of Arizona College of Medicine-Phoenix, ABC1 Building, 425 N 5th Street, Phoenix, AZ, 85004, USA.

Center for Cancer and Blood Disorders (CCBD), Phoenix Children's, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA.

出版信息

Bioact Mater. 2023 Sep 6;31:440-462. doi: 10.1016/j.bioactmat.2023.08.022. eCollection 2024 Jan.


DOI:10.1016/j.bioactmat.2023.08.022
PMID:37701452
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10494322/
Abstract

Cancer immunotherapy has gained momentum for treating malignant tumors over the past decade. Checkpoint blockade and chimeric antigen receptor cell therapy (CAR-T) have shown considerable potency against liquid and solid cancers. However, the tumor microenvironment (TME) is highly immunosuppressive and hampers the effect of currently available cancer immunotherapies on overall treatment outcomes. Advancements in the design and engineering of nanomaterials have opened new avenues to modulate the TME. Progress in the current nanocomposite technology can overcome immunosuppression and trigger robust immunotherapeutic responses by integrating synergistic functions of different molecules. We will review recent advancements in nanomedical applications and discuss specifically designed nanocomposites modulating the TME for cancer immunotherapy. In addition, we provide information on the current landscape of clinical-stage nanocomposites for cancer immunotherapy.

摘要

在过去十年中,癌症免疫疗法在治疗恶性肿瘤方面获得了发展动力。检查点阻断和嵌合抗原受体细胞疗法(CAR-T)已显示出对液体和实体癌症具有相当大的效力。然而,肿瘤微环境(TME)具有高度免疫抑制性,会阻碍当前可用的癌症免疫疗法对整体治疗效果的影响。纳米材料设计与工程方面的进展为调节肿瘤微环境开辟了新途径。当前纳米复合技术的进步能够通过整合不同分子的协同功能来克服免疫抑制并引发强大的免疫治疗反应。我们将回顾纳米医学应用的最新进展,并特别讨论为癌症免疫疗法调节肿瘤微环境而专门设计的纳米复合材料。此外,我们还提供了用于癌症免疫疗法的临床阶段纳米复合材料的当前情况信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/fd9aba27d610/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/8163fbdaa219/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/0d146fe3d640/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/3efae387f2b7/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/2961a2ed1cc4/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/27723e47f3af/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/b8851ffeeed4/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/f7c897302a69/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/fd9aba27d610/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/8163fbdaa219/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/0d146fe3d640/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/3efae387f2b7/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/2961a2ed1cc4/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/27723e47f3af/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/b8851ffeeed4/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/f7c897302a69/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b9/10494322/fd9aba27d610/gr7.jpg

相似文献

[1]
Multifunctional nanocomposites modulating the tumor microenvironment for enhanced cancer immunotherapy.

Bioact Mater. 2023-9-6

[2]
Tumor Microenvironment Immunosuppression: A Roadblock to CAR T-Cell Advancement in Solid Tumors.

Cells. 2022-11-16

[3]
Enhancing Cancer Chemo-Immunotherapy: Innovative Approaches for Overcoming Immunosuppression by Functional Nanomaterials.

Small Methods. 2024-1

[4]
Pushing Past the Blockade: Advancements in T Cell-Based Cancer Immunotherapies.

Front Immunol. 2021

[5]
The Interplay between T Cells and Cancer: The Basis of Immunotherapy.

Genes (Basel). 2023-4-28

[6]
Recent Advances in CAR-Based Solid Tumor Immunotherapy.

Cells. 2023-6-11

[7]
An Ex Vivo 3D Tumor Microenvironment-Mimicry Culture to Study TAM Modulation of Cancer Immunotherapy.

Cells. 2022-5-8

[8]
Immunosuppression in tumor immune microenvironment and its optimization from CAR-T cell therapy.

Theranostics. 2022

[9]
Supercharging adoptive T cell therapy to overcome solid tumor-induced immunosuppression.

Sci Transl Med. 2019-6-5

[10]
Immunotherapy and immunoengineering for breast cancer; a comprehensive insight into CAR-T cell therapy advancements, challenges and prospects.

Cell Oncol (Dordr). 2022-10

引用本文的文献

[1]
Recent advances in polydopamine-coated metal-organic frameworks for cancer therapy.

Front Bioeng Biotechnol. 2025-4-1

[2]
Nanocarriers for cutting-edge cancer immunotherapies.

J Transl Med. 2025-4-16

[3]
Nano-Enhanced Polymer Composite Materials: A Review of Current Advancements and Challenges.

Polymers (Basel). 2025-3-26

[4]
Special issue: Recent advances in immunotherapy and immunoengineering.

Bioact Mater. 2025-2-28

[5]
Dinaciclib Interrupts Cell Cycle and Induces Apoptosis in Oral Squamous Cell Carcinoma: Mechanistic Insights and Therapeutic Potential.

Int J Mol Sci. 2025-2-28

[6]
Engineered bacterial membrane biomimetic covalent organic framework as nano-immunopotentiator for cancer immunotherapy.

Bioact Mater. 2025-1-25

[7]
Tumor microenvironment targeted nano-drug delivery systems for multidrug resistant tumor therapy.

Theranostics. 2025-1-2

[8]
Design of pH-Responsive Nanomaterials Based on the Tumor Microenvironment.

Int J Nanomedicine. 2025-1-18

[9]
Harnessing Bacterial Agents to Modulate the Tumor Microenvironment and Enhance Cancer Immunotherapy.

Cancers (Basel). 2024-11-13

[10]
Polypeptides-Based Nanocarriers in Tumor Therapy.

Pharmaceutics. 2024-9-10

本文引用的文献

[1]
Nano-vaccines combining customized in situ anti-PD-L1 depot for enhanced tumor immunotherapy.

Nanomedicine. 2023-9

[2]
Microfluidics-Enabled Nanovesicle Delivers CD47/PD-L1 Antibodies to Enhance Antitumor Immunity and Reduce Immunotoxicity in Lung Adenocarcinoma.

Adv Sci (Weinh). 2023-7

[3]
Surface-Engineered Monocyte Immunotherapy Combined Graphene Quantum Dots Effective Against Solid Tumor Targets.

Int J Nanomedicine. 2023

[4]
Gene-guided OX40L anchoring to tumor cells for synergetic tumor "self-killing" immunotherapy.

Bioact Mater. 2022-7-17

[5]
Triple-Combination Immunogenic Nanovesicles Reshape the Tumor Microenvironment to Potentiate Chemo-Immunotherapy in Preclinical Cancer Models.

Adv Sci (Weinh). 2023-5

[6]
Tumor Cell-Derived Microparticles Induced by Methotrexate Augment T-cell Antitumor Responses by Downregulating Expression of PD-1 in Neutrophils.

Cancer Immunol Res. 2023-4-3

[7]
A nanoadjuvant that dynamically coordinates innate immune stimuli activation enhances cancer immunotherapy and reduces immune cell exhaustion.

Nat Nanotechnol. 2023-4

[8]
Polymeric microneedles enable simultaneous delivery of cancer immunomodulatory drugs and detection of skin biomarkers.

Theranostics. 2023

[9]
Combination of genetically engineered T cells and immune checkpoint blockade for the treatment of cancer.

Immunother Adv. 2022-1-25

[10]
Nanotechnology-Based siRNA Delivery Systems to Overcome Tumor Immune Evasion in Cancer Immunotherapy.

Pharmaceutics. 2022-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索