文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

三联免疫纳米囊泡重塑肿瘤微环境,增强临床前癌症模型的化疗免疫治疗。

Triple-Combination Immunogenic Nanovesicles Reshape the Tumor Microenvironment to Potentiate Chemo-Immunotherapy in Preclinical Cancer Models.

机构信息

The First Affiliated Hospital, National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, P. R. China.

Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, 250117, P. R. China.

出版信息

Adv Sci (Weinh). 2023 May;10(15):e2204890. doi: 10.1002/advs.202204890. Epub 2023 Apr 5.


DOI:10.1002/advs.202204890
PMID:37017572
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10214259/
Abstract

Immune checkpoint blockade (ICB) therapies have had a tremendous impact on cancer therapy. However, most patients harbor a poorly immunogenic tumor microenvironment (TME), presenting overwhelming de novo refractoriness to ICB inhibitors. To address these challenges, combinatorial regimens that employ chemotherapies and immunostimulatory agents are urgently needed. Here, a combination chemoimmunotherapeutic nanosystem consisting of a polymeric monoconjugated gemcitabine (GEM) prodrug nanoparticle decorated with an anti-programmed cell death-ligand 1 (PD-L1) antibody (αPD-L1) on the surface and a stimulator of interferon genes (STING) agonist encapsulated inside is developed. Treatment with GEM nanoparticles upregulates PD-L1 expression in ICB-refractory tumors, resulting in augmented intratumor drug delivery in vivo and synergistic antitumor efficacy via activation of intratumor CD8 T cell responses. Integration of a STING agonist into the αPD-L1-decorated GEM nanoparticles further improves response rates by transforming low-immunogenic tumors into inflamed tumors. Systemically administered triple-combination nanovesicles induce robust antitumor immunity, resulting in durable regression of established large tumors and a reduction in the metastatic burden, coincident with immunological memory against tumor rechallenge in multiple murine tumor models. These findings provide a design rationale for synchronizing STING agonists, PD-L1 antibodies, and chemotherapeutic prodrugs to generate a chemoimmunotherapeutic effect in treating ICB-nonresponsive tumors.

摘要

免疫检查点阻断 (ICB) 疗法对癌症治疗产生了巨大影响。然而,大多数患者存在免疫原性较差的肿瘤微环境 (TME),对 ICB 抑制剂表现出压倒性的新生耐药性。为了应对这些挑战,迫切需要联合使用化疗药物和免疫刺激剂的联合方案。在这里,开发了一种由聚合物单偶联吉西他滨 (GEM) 前药纳米颗粒组成的化学免疫治疗联合纳米系统,该纳米颗粒表面修饰有抗程序性细胞死亡配体 1 (PD-L1) 抗体 (αPD-L1),内部包裹有干扰素基因刺激剂 (STING) 激动剂。用 GEM 纳米颗粒治疗可上调 ICB 耐药肿瘤中的 PD-L1 表达,导致体内肿瘤内药物递送增加,并通过激活肿瘤内 CD8 T 细胞反应产生协同抗肿瘤疗效。将 STING 激动剂整合到 αPD-L1 修饰的 GEM 纳米颗粒中,通过将低免疫原性肿瘤转化为炎症肿瘤,进一步提高了反应率。系统给予三联组合纳米囊可诱导强烈的抗肿瘤免疫,导致已建立的大型肿瘤持久消退,并减少转移负担,同时在多种小鼠肿瘤模型中对肿瘤再挑战产生免疫记忆。这些发现为同步 STING 激动剂、PD-L1 抗体和化疗前药提供了设计原理,以产生治疗 ICB 无反应性肿瘤的化学免疫治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9554/10214259/dba908661304/ADVS-10-2204890-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9554/10214259/dccbe6cbfb24/ADVS-10-2204890-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9554/10214259/17271e0222c7/ADVS-10-2204890-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9554/10214259/899fff918464/ADVS-10-2204890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9554/10214259/ba060ebb0072/ADVS-10-2204890-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9554/10214259/07cca5f09889/ADVS-10-2204890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9554/10214259/dba908661304/ADVS-10-2204890-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9554/10214259/dccbe6cbfb24/ADVS-10-2204890-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9554/10214259/17271e0222c7/ADVS-10-2204890-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9554/10214259/899fff918464/ADVS-10-2204890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9554/10214259/ba060ebb0072/ADVS-10-2204890-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9554/10214259/07cca5f09889/ADVS-10-2204890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9554/10214259/dba908661304/ADVS-10-2204890-g004.jpg

相似文献

[1]
Triple-Combination Immunogenic Nanovesicles Reshape the Tumor Microenvironment to Potentiate Chemo-Immunotherapy in Preclinical Cancer Models.

Adv Sci (Weinh). 2023-5

[2]
Tumor-targeted interleukin-12 synergizes with entinostat to overcome PD-1/PD-L1 blockade-resistant tumors harboring MHC-I and APM deficiencies.

J Immunother Cancer. 2022-6

[3]
PD-L1/TLR7 dual-targeting nanobody-drug conjugate mediates potent tumor regression via elevating tumor immunogenicity in a host-expressed PD-L1 bias-dependent way.

J Immunother Cancer. 2022-10

[4]
Functional and mechanistic advantage of the use of a bifunctional anti-PD-L1/IL-15 superagonist.

J Immunother Cancer. 2020-4

[5]
Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19-IL2 cures poorly immunogenic tumors when combined with radiotherapy.

J Immunother Cancer. 2021-3

[6]
Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3.

J Immunother Cancer. 2021-12

[7]
Gemcitabine-facilitated modulation of the tumor microenvironment and PD-1/PD-L1 blockade generate a synergistic antitumor effect in a murine hepatocellular carcinoma model.

Clin Res Hepatol Gastroenterol. 2022-4

[8]
Anti-PD-L1 peptide-conjugated prodrug nanoparticles for targeted cancer immunotherapy combining PD-L1 blockade with immunogenic cell death.

Theranostics. 2022

[9]
Bio-orthogonal click chemistry strategy for PD-L1-targeted imaging and pyroptosis-mediated chemo-immunotherapy of triple-negative breast cancer.

J Nanobiotechnology. 2024-8-1

[10]
Combination of oral STING agonist MSA-2 and anti-TGF-β/PD-L1 bispecific antibody YM101: a novel immune cocktail therapy for non-inflamed tumors.

J Hematol Oncol. 2022-10-8

引用本文的文献

[1]
Ultrasound targeted microbubbles for theranostic applications in liver diseases: from molecular imaging to targeted therapy.

Drug Deliv. 2025-12

[2]
Harnessing nanoprodrugs to enhance cancer immunotherapy: overcoming barriers to precision treatment.

Mater Today Bio. 2025-5-31

[3]
Nanoparticle-Based Strategies to Enhance the Efficacy of STING Activators in Cancer Immunotherapy.

Int J Nanomedicine. 2025-4-26

[4]
PdRu bimetallic nanoalloys with improved photothermal effect for amplified ROS-mediated tumor therapy.

Front Bioeng Biotechnol. 2025-1-3

[5]
Orchestrating cancer therapy: Recent advances in nanoplatforms harmonize immunotherapy with multifaceted treatments.

Mater Today Bio. 2024-12-9

[6]
Combination Chemical and Mechanical Tumor Immunomodulation Using Cavitating Mesoporous Silica Nanoparticles.

ACS Appl Nano Mater. 2024-8-23

[7]
Nanocarrier design for pathogen-inspired innate immune agonist delivery.

Trends Immunol. 2024-9

[8]
The quest for nanoparticle-powered vaccines in cancer immunotherapy.

J Nanobiotechnology. 2024-2-14

[9]
Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy.

Biomark Res. 2024-1-7

[10]
Multifunctional nanocomposites modulating the tumor microenvironment for enhanced cancer immunotherapy.

Bioact Mater. 2023-9-6

本文引用的文献

[1]
Photoactivatable nanoagonists chemically programmed for pharmacokinetic tuning and in situ cancer vaccination.

Proc Natl Acad Sci U S A. 2023-2-21

[2]
Hallmarks of response, resistance, and toxicity to immune checkpoint blockade.

Cell. 2022-2-3

[3]
Stimuli-Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy.

Adv Sci (Weinh). 2022-2

[4]
Gemcitabine-facilitated modulation of the tumor microenvironment and PD-1/PD-L1 blockade generate a synergistic antitumor effect in a murine hepatocellular carcinoma model.

Clin Res Hepatol Gastroenterol. 2022-4

[5]
Immune checkpoint blockade sensitivity and progression-free survival associates with baseline CD8 T cell clone size and cytotoxicity.

Sci Immunol. 2021-10

[6]
Role of nanoparticle-mediated immunogenic cell death in cancer immunotherapy.

Asian J Pharm Sci. 2021-3

[7]
The cGAS-STING pathway as a therapeutic target in inflammatory diseases.

Nat Rev Immunol. 2021-9

[8]
Beyond immune checkpoint blockade: emerging immunological strategies.

Nat Rev Drug Discov. 2021-12

[9]
Ultrasound-Augmented Mitochondrial Calcium Ion Overload by Calcium Nanomodulator to Induce Immunogenic Cell Death.

Nano Lett. 2021-3-10

[10]
PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade.

Nat Commun. 2020-9-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索