文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Tumor microenvironment targeted nano-drug delivery systems for multidrug resistant tumor therapy.

作者信息

Shao Xinyue, Zhao Xiaoling, Wang Binghao, Fan Jiahui, Wang Jinping, An Hailong

机构信息

Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, PR China.

出版信息

Theranostics. 2025 Jan 2;15(5):1689-1714. doi: 10.7150/thno.103636. eCollection 2025.


DOI:10.7150/thno.103636
PMID:39897552
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11780529/
Abstract

In recent years, nano-drug delivery systems (Nano-DDS) that target the tumor microenvironment (TME) to overcome multidrug resistance (MDR) have become a research hotspot in the field of cancer therapy. By precisely targeting the TME and regulating its unique pathological features, such as hypoxia, weakly acidic pH, and abnormally expressed proteins, etc., these Nano-DDS enable effective delivery of therapeutic agents and reversal of MDR. This scientific research community is increasing its investment in the development of diversified systems and exploring their anti-drug resistance potential. Therefore, it is particularly important to conduct a comprehensive review of the research progress of TME-targeted Nano-DDS in recent years. After a brief introduction of TME and tumor MDR, the design principle and structure of liposomes, polymer micelles and inorganic nanocarriers are focused on, and their characteristics as TME-targeted nanocarriers are described. It also demonstrates how these systems break through the cancer MDR treatment through various targeting mechanisms, discusses their synthetic innovation, research results and resistance overcoming mechanisms. The review was concluded with deliberations on the key challenges and future outlooks of targeting TME Nano-DDS in cancer therapy.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/90b040c6d882/thnov15p1689g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/eaec8ec43366/thnov15p1689g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/74a4b0d2740d/thnov15p1689g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/acf8bd10e92d/thnov15p1689g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/f8462573c37f/thnov15p1689g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/12d66f9cefd5/thnov15p1689g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/a100300fdbcd/thnov15p1689g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/a6be2cd99544/thnov15p1689g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/246eee6476d2/thnov15p1689g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/90b040c6d882/thnov15p1689g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/eaec8ec43366/thnov15p1689g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/74a4b0d2740d/thnov15p1689g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/acf8bd10e92d/thnov15p1689g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/f8462573c37f/thnov15p1689g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/12d66f9cefd5/thnov15p1689g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/a100300fdbcd/thnov15p1689g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/a6be2cd99544/thnov15p1689g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/246eee6476d2/thnov15p1689g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c4/11780529/90b040c6d882/thnov15p1689g009.jpg

相似文献

[1]
Tumor microenvironment targeted nano-drug delivery systems for multidrug resistant tumor therapy.

Theranostics. 2025-1-2

[2]
Mitochondrial targeted doxorubicin derivatives delivered by ROS-responsive nanocarriers to breast tumor for overcoming of multidrug resistance.

Pharm Dev Technol. 2021-1

[3]
Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance.

Drug Resist Updat. 2011-2-16

[4]
Role of integrated cancer nanomedicine in overcoming drug resistance.

Adv Drug Deliv Rev. 2013-7-21

[5]
[Progress in the study of micelle delivery system reversing multidrug resistance].

Yao Xue Xue Bao. 2009-7

[6]
Exploring the Potential of Nanotherapeutics in Targeting Tumor Microenvironment for Cancer Therapy.

Pharmacol Res. 2017-5-13

[7]
Nanoparticle approaches to combating drug resistance.

Future Med Chem. 2015-8

[8]
Nano-drug delivery system for the treatment of multidrug-resistant breast cancer: Current status and future perspectives.

Biomed Pharmacother. 2024-10

[9]
A comprehensive review on overcoming the multifaceted challenge of cancer multidrug resistance: The emerging role of mesoporous silica nanoparticles.

Biomed Pharmacother. 2025-5

[10]
Multi-modal strategies for overcoming tumor drug resistance: hypoxia, the Warburg effect, stem cells, and multifunctional nanotechnology.

J Control Release. 2011-4-8

引用本文的文献

[1]
Silencing RPL11 attenuates acute kidney injury by suppressing tubular apoptosis and macrophage-driven inflammation.

Front Immunol. 2025-8-15

[2]
Recent advances in copper sulfide nanoparticles for cancer diagnosis and therapy.

Mater Today Bio. 2025-8-13

[3]
Cancer‑associated fibroblasts in human malignancies, with a particular emphasis on sarcomas (Review).

Int J Oncol. 2025-10

[4]
How Traditional Chinese Medicine Can Play a Role In Nanomedicine? A Comprehensive Review of the Literature.

Int J Nanomedicine. 2025-5-20

[5]
Targeted cancer therapy potential of quercetin-conjugated with folic acid-modified nanocrystalline cellulose nanoparticles: a study on AGS and A2780 cell lines.

BMC Biotechnol. 2025-4-16

[6]
Engineering Useful Microbial Species for Pharmaceutical Applications.

Microorganisms. 2025-3-5

[7]
Recent advances in nanomedicine for the diagnosis and therapy of thyroid disorders.

3 Biotech. 2025-3

本文引用的文献

[1]
Cancer therapy resistance mediated by cancer-associated fibroblast-derived extracellular vesicles: biological mechanisms to clinical significance and implications.

Mol Cancer. 2024-9-7

[2]
Programmable Tetrahedral DNA-RNA Nanocages Woven with Stimuli-Responsive siRNA for Enhancing Therapeutic Efficacy of Multidrug-Resistant Tumors.

Adv Sci (Weinh). 2024-8

[3]
Dendritic Polymer-Based Nanomedicines Remodel the Tumor Stroma: Improve Drug Penetration and Enhance Antitumor Immune Response.

Adv Mater. 2024-6

[4]
The extracellular matrix as hallmark of cancer and metastasis: From biomechanics to therapeutic targets.

Sci Transl Med. 2024-1-3

[5]
The post-chemotherapy changes of tumor physical microenvironment: Targeting extracellular matrix to address chemoresistance.

Cancer Lett. 2024-2-1

[6]
Stimuli-Responsive Polymer-Based Nanosystems for Cancer Theranostics.

ACS Nano. 2023-12-12

[7]
Advances in the structure, mechanism and targeting of chemoresistance-linked ABC transporters.

Nat Rev Cancer. 2023-11

[8]
Multifunctional nanocomposites modulating the tumor microenvironment for enhanced cancer immunotherapy.

Bioact Mater. 2023-9-6

[9]
Photoactivated DNA Nanodrugs Damage Mitochondria to Improve Gene Therapy for Reversing Chemoresistance.

ACS Nano. 2023-9-12

[10]
Beyond matrix stiffness: targeting force-induced cancer drug resistance.

Trends Cancer. 2023-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索