文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米颗粒与细胞因子反应。

Nanoparticles and cytokine response.

作者信息

Nasrullah Mohammad, Meenakshi Sundaram Daniel Nisakar, Claerhout Jillian, Ha Khanh, Demirkaya Erkan, Uludag Hasan

机构信息

Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.

Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada.

出版信息

Front Bioeng Biotechnol. 2023 Aug 28;11:1243651. doi: 10.3389/fbioe.2023.1243651. eCollection 2023.


DOI:10.3389/fbioe.2023.1243651
PMID:37701495
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10493271/
Abstract

Synthetic nanoparticles (NPs) are non-viral equivalents of viral gene delivery systems that are actively explored to deliver a spectrum of nucleic acids for diverse range of therapies. The success of the nanoparticulate delivery systems, in the form of efficacy and safety, depends on various factors related to the physicochemical features of the NPs, as well as their ability to remain "stealth" in the host environment. The initial cytokine response upon exposure to nucleic acid bearing NPs is a critical component of the host response and, unless desired, should be minimized to prevent the unintended consequences of NP administration. In this review article, we will summarize the most recent literature on cytokine responses to nanoparticulate delivery systems and identify the main factors affecting this response. The NP features responsible for eliciting the cytokine response are articulated along with other factors related to the mode of therapeutic administration. For diseases arising from altered cytokine pathophysiology, attempts to silence the individual components of cytokine response are summarized in the context of different diseases, and the roles of NP features on this respect are presented. We finish with the authors' perspective on the possibility of engineering NP systems with controlled cytokine responses. This review is intended to sensitize the reader with important issues related to cytokine elicitation of non-viral NPs and the means of controlling them to design improved interventions in the clinical setting.

摘要

合成纳米颗粒(NPs)是病毒基因传递系统的非病毒等效物,目前正在积极探索其用于递送多种核酸以进行各种治疗。纳米颗粒递送系统在疗效和安全性方面的成功取决于与纳米颗粒物理化学特征相关的各种因素,以及它们在宿主环境中保持“隐身”的能力。暴露于携带核酸的纳米颗粒时的初始细胞因子反应是宿主反应的关键组成部分,除非有此需求,否则应尽量减少以防止纳米颗粒给药产生意外后果。在这篇综述文章中,我们将总结关于纳米颗粒递送系统细胞因子反应的最新文献,并确定影响这种反应的主要因素。阐述了引发细胞因子反应的纳米颗粒特征以及与治疗给药方式相关的其他因素。对于由细胞因子病理生理学改变引起的疾病,在不同疾病背景下总结了沉默细胞因子反应各个成分的尝试,并介绍了纳米颗粒特征在这方面的作用。我们以作者对设计具有可控细胞因子反应的纳米颗粒系统可能性的观点作为结尾。这篇综述旨在使读者关注与非病毒纳米颗粒细胞因子引发相关的重要问题,以及在临床环境中控制这些问题以设计改进干预措施的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e2/10493271/b8b065395542/fbioe-11-1243651-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e2/10493271/17926d9e465b/fbioe-11-1243651-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e2/10493271/0eeeeac5cff7/fbioe-11-1243651-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e2/10493271/b4d0b29396c2/fbioe-11-1243651-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e2/10493271/3575ece4fac5/fbioe-11-1243651-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e2/10493271/5db3c68363b0/fbioe-11-1243651-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e2/10493271/b8b065395542/fbioe-11-1243651-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e2/10493271/17926d9e465b/fbioe-11-1243651-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e2/10493271/0eeeeac5cff7/fbioe-11-1243651-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e2/10493271/b4d0b29396c2/fbioe-11-1243651-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e2/10493271/3575ece4fac5/fbioe-11-1243651-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e2/10493271/5db3c68363b0/fbioe-11-1243651-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e2/10493271/b8b065395542/fbioe-11-1243651-g006.jpg

相似文献

[1]
Nanoparticles and cytokine response.

Front Bioeng Biotechnol. 2023-8-28

[2]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[3]
Adverse immunological responses against non-viral nanoparticle (NP) delivery systems in the lung.

J Immunotoxicol. 2021-12

[4]
Controlling the actuation of therapeutic nanomaterials: enabling nanoparticle-mediated drug delivery.

Ther Deliv. 2013-11

[5]

2014-9

[6]
A high-throughput bioimaging study to assess the impact of chitosan-based nanoparticle degradation on DNA delivery performance.

Acta Biomater. 2016-12

[7]
Metal-Ligand Interactions and Their Roles in Controlling Nanoparticle Formation and Functions.

Acc Chem Res. 2023-6-20

[8]
Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles.

Expert Opin Drug Deliv. 2008-5

[9]
Nanoparticle-mediated gene therapy as a novel strategy for the treatment of retinoblastoma.

Colloids Surf B Biointerfaces. 2022-12

[10]
Development and in vivo safety assessment of tenofovir-loaded nanoparticles-in-film as a novel vaginal microbicide delivery system.

Acta Biomater. 2016-10-15

引用本文的文献

[1]
Nanomedicine for Diagnosis and Treatment of Cardiac Fibrosis.

Int J Nanomedicine. 2025-8-7

[2]
A Systematic Review of Toxicity, Biodistribution, and Biosafety in Upconversion Nanomaterials: Critical Insights into Toxicity Mitigation Strategies and Future Directions for Safe Applications.

BME Front. 2025-5-23

[3]
Nanoimmunotherapy: the smart trooper for cancer therapy.

Explor Target Antitumor Ther. 2025-4-10

[4]
Inhibition of IFNAR-JAK signaling enhances tolerability and transgene expression of systemic non-viral DNA delivery.

Mol Ther Nucleic Acids. 2025-3-5

[5]
Unveiling nanoparticle-immune interactions: how super-resolution imaging illuminates the invisible.

Nanoscale. 2025-1-16

[6]
Role of physicochemical properties in silica nanoparticle-mediated immunostimulation.

Nanotoxicology. 2024-11

[7]
Lipopolymer/siRNA Nanoparticles Targeting the Signal Transducer and Activator of Transcription 5A Disrupts Proliferation of Acute Lymphoblastic Leukemia.

ACS Pharmacol Transl Sci. 2024-8-15

[8]
Nanomaterials in Immunology: Bridging Innovative Approaches in Immune Modulation, Diagnostics, and Therapy.

J Funct Biomater. 2024-8-14

本文引用的文献

[1]
Dendrimers and Derivatives as Multifunctional Nanotherapeutics for Alzheimer's Disease.

Pharmaceutics. 2023-3-24

[2]
Engineering cytokine therapeutics.

Nat Rev Bioeng. 2023

[3]
Precise and systematic end group chemistry modifications on PAMAM and poly(l-lysine) dendrimers to improve cytosolic delivery of mRNA.

J Control Release. 2023-4

[4]
Influence of PEG Chain Length of Functionalized Magnetic Nanoparticles on the Cytocompatibility and Immune Competence of Primary Murine Macrophages and Dendritic Cells.

Int J Mol Sci. 2023-1-29

[5]
Unsaturated, Trialkyl Ionizable Lipids are Versatile Lipid-Nanoparticle Components for Therapeutic and Vaccine Applications.

Adv Mater. 2023-4

[6]
The Effect of PEGylated Graphene Oxide Nanoparticles on the Th17-Polarization of Activated T Helpers.

Materials (Basel). 2023-1-16

[7]
Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery.

Nat Protoc. 2023-1

[8]
Phase 1 clinical trial of CRISPR-engineered CAR19 universal T cells for treatment of children with refractory B cell leukemia.

Sci Transl Med. 2022-10-26

[9]
Cytokine Storm Syndrome.

Annu Rev Med. 2023-1-27

[10]
Fusogenic peptide delivery of bioactive siRNAs targeting CSNK2A1 for treatment of ovarian cancer.

Mol Ther Nucleic Acids. 2022-9-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索