Khan Imran Ahamed, Yu Ting, Yang Ming, Liu Jinliang, Chen Zhong
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
Department of Cardiology, Shanghai Sixth People's Hospital Fujian, Jinjiang, Fujian 362200, China.
BME Front. 2025 May 23;6:0120. doi: 10.34133/bmef.0120. eCollection 2025.
Upconversion nanoparticles (UCNPs) are emerging as highly promising nanomaterials due to their exceptional optical properties, enabling diverse applications in biosensing, bioimaging, photodynamic therapy, and drug delivery. However, their potential toxicity should be comprehensively investigated for the safe utilization of UCNPs in several biomedical and environmental applications. This review systematically evaluates the current knowledge on UCNP toxicity from 2008 to 2024, focusing on key toxicological pathways, such as oxidative stress, reactive oxygen species (ROS) production, inflammatory responses, and apoptosis/necrosis, alongside their absorption, distribution, metabolism, and excretion processes and kinetics. Distinctively, this review introduces a bibliometric analysis of UCNP toxicity and biodistribution research, providing a quantitative assessment of publication trends, influential authors, leading institutions, funding agencies, and keyword occurrences. This approach offers a macroscopic perspective on the evolution and current landscape of UCNP safety research, a dimension largely unexplored in existing literature. Furthermore, the review combines mechanistic insights into UCNP toxicity with a critical evaluation of surface modifications, physicochemical properties, and administration routes, presenting a holistic framework for understanding UCNP biosafety. By combining bibliometric data with mechanistic insights, this review provides a data-driven perspective on UCNP-associated risks, actionable strategies for enhancing biosafety through surface engineering, and a forward-looking discussion on regulatory challenges and future directions for UCNP-based technologies. These findings bridge existing gaps in the literature and offer a comprehensive resource for researchers, clinicians, and policymakers, facilitating the safe development and utilization of UCNP-based technologies while establishing robust safety guidelines to mitigate adverse effects on human health and the environment.
由于具有卓越的光学特性,上转换纳米粒子(UCNPs)正成为极具前景的纳米材料,使其能够在生物传感、生物成像、光动力疗法和药物递送等领域得到广泛应用。然而,为了在多种生物医学和环境应用中安全使用UCNPs,需要对其潜在毒性进行全面研究。本综述系统评估了2008年至2024年关于UCNP毒性的现有知识,重点关注关键的毒理学途径,如氧化应激、活性氧(ROS)生成、炎症反应以及凋亡/坏死,同时还涉及它们的吸收、分布、代谢、排泄过程及动力学。特别值得一提的是,本综述引入了对UCNP毒性和生物分布研究的文献计量分析,对发表趋势、有影响力的作者、领先机构、资助机构以及关键词出现频率进行了定量评估。这种方法为UCNP安全研究的演变和当前格局提供了宏观视角,这是现有文献中基本未涉及的一个维度。此外,该综述将对UCNP毒性的机制性见解与对表面修饰、物理化学性质及给药途径的批判性评估相结合,提出了一个理解UCNP生物安全性的整体框架。通过将文献计量数据与机制性见解相结合,本综述提供了一个基于数据的视角来审视与UCNP相关的风险、通过表面工程提高生物安全性的可行策略,以及关于监管挑战和基于UCNP技术未来发展方向的前瞻性讨论。这些研究结果填补了现有文献中的空白,为研究人员、临床医生和政策制定者提供了全面的资源,有助于安全开发和利用基于UCNP的技术,同时建立强有力的安全指南以减轻对人类健康和环境的不利影响。