Suppr超能文献

药物发现的分子动力学和其他高性能计算模拟。

Molecular Dynamics and Other HPC Simulations for Drug Discovery.

机构信息

Evotec SE, Integrated Drug Discovery, Molecular Architects, Campus Curie, Toulouse, France.

出版信息

Methods Mol Biol. 2024;2716:265-291. doi: 10.1007/978-1-0716-3449-3_12.

Abstract

High performance computing (HPC) is taking an increasingly important place in drug discovery. It makes possible the simulation of complex biochemical systems with high precision in a short time, thanks to the use of sophisticated algorithms. It promotes the advancement of knowledge in fields that are inaccessible or difficult to access through experimentation and it contributes to accelerating the discovery of drugs for unmet medical needs while reducing costs. Herein, we report how computational performance has evolved over the past years, and then we detail three domains where HPC is essential. Molecular dynamics (MD) is commonly used to explore the flexibility of proteins, thus generating a better understanding of different possible approaches to modulate their activity. Modeling and simulation of biopolymer complexes enables the study of protein-protein interactions (PPI) in healthy and disease states, thus helping the identification of targets of pharmacological interest. Virtual screening (VS) also benefits from HPC to predict in a short time, among millions or billions of virtual chemical compounds, the best potential ligands that will be tested in relevant assays to start a rational drug design process.

摘要

高性能计算(HPC)在药物发现中扮演着越来越重要的角色。它通过使用复杂的算法,能够在短时间内高精度地模拟复杂的生化系统。它促进了无法通过实验或难以通过实验获得的领域的知识进步,并有助于加速发现针对未满足医疗需求的药物,同时降低成本。在此,我们报告过去几年计算性能的发展情况,然后详细介绍 HPC 必不可少的三个领域。分子动力学(MD)通常用于探索蛋白质的柔韧性,从而更好地理解不同可能的方法来调节其活性。生物聚合物复合物的建模和模拟使研究健康和疾病状态下的蛋白质-蛋白质相互作用(PPI)成为可能,从而有助于确定具有药理学意义的靶点。虚拟筛选(VS)也受益于 HPC,可以在短时间内预测数百万或数十亿种虚拟化合物中,哪些是最有潜力的配体,这些配体将在相关的测定中进行测试,以启动合理的药物设计过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验