Suppr超能文献

将高性能计算应用于药物发现和分子模拟。

Applying high-performance computing in drug discovery and molecular simulation.

作者信息

Liu Tingting, Lu Dong, Zhang Hao, Zheng Mingyue, Yang Huaiyu, Xu Yechun, Luo Cheng, Zhu Weiliang, Yu Kunqian, Jiang Hualiang

机构信息

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

出版信息

Natl Sci Rev. 2016 Mar;3(1):49-63. doi: 10.1093/nsr/nww003. Epub 2016 Jan 11.

Abstract

In recent decades, high-performance computing (HPC) technologies and supercomputers in China have significantly advanced, resulting in remarkable achievements. Computational drug discovery and design, which is based on HPC and combines pharmaceutical chemistry and computational biology, has become a critical approach in drug research and development and is financially supported by the Chinese government. This approach has yielded a series of new algorithms in drug design, as well as new software and databases. This review mainly focuses on the application of HPC to the fields of drug discovery and molecular simulation at the Chinese Academy of Sciences, including virtual drug screening, molecular dynamics simulation, and protein folding. In addition, the potential future application of HPC in precision medicine is briefly discussed.

摘要

近几十年来,中国的高性能计算(HPC)技术和超级计算机取得了显著进步,成果斐然。基于高性能计算并结合药物化学与计算生物学的计算药物发现与设计,已成为药物研发中的关键方法,并得到了中国政府的资金支持。这种方法在药物设计中产生了一系列新算法以及新的软件和数据库。本综述主要聚焦于中国科学院高性能计算在药物发现和分子模拟领域的应用,包括虚拟药物筛选、分子动力学模拟和蛋白质折叠。此外,还简要讨论了高性能计算在精准医学中未来可能的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9595/7107815/2dececaff88a/nww003fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验