UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK.
Cambridge Institute of Science, Altos Labs, Great Abington CB21 6GP, UK.
Brain. 2024 Feb 1;147(2):649-664. doi: 10.1093/brain/awad313.
The unfolded protein response (UPR) is rapidly gaining momentum as a therapeutic target for protein misfolding neurodegenerative diseases, in which its overactivation results in sustained translational repression leading to synapse loss and neurodegeneration. In mouse models of these disorders, from Alzheimer's to prion disease, modulation of the pathway-including by the licensed drug, trazodone-restores global protein synthesis rates with profound neuroprotective effects. However, the precise nature of the translational impairment, in particular the specific proteins affected in disease, and their response to therapeutic UPR modulation are poorly understood. We used non-canonical amino acid tagging (NCAT) to measure de novo protein synthesis in the brains of prion-diseased mice with and without trazodone treatment, in both whole hippocampus and cell-specifically. During disease the predominant nascent proteome changes occur in synaptic, cytoskeletal and mitochondrial proteins in both hippocampal neurons and astrocytes. Remarkably, trazodone treatment for just 2 weeks largely restored the whole disease nascent proteome in the hippocampus to that of healthy, uninfected mice, predominantly with recovery of proteins involved in synaptic and mitochondrial function. In parallel, trazodone treatment restored the disease-associated decline in synapses and mitochondria and their function to wild-type levels. In conclusion, this study increases our understanding of how translational repression contributes to neurodegeneration through synaptic and mitochondrial toxicity via depletion of key proteins essential for their function. Further, it provides new insights into the neuroprotective mechanisms of trazodone through reversal of this toxicity, relevant for the treatment of neurodegenerative diseases via translational modulation.
未折叠蛋白反应 (UPR) 作为治疗蛋白质错误折叠神经退行性疾病的靶点正在迅速发展,其过度激活导致持续的翻译抑制,导致突触丧失和神经退行性变。在这些疾病的小鼠模型中,从阿尔茨海默病到朊病毒病,该途径的调节——包括许可药物曲唑酮——可恢复全局蛋白质合成率并产生深远的神经保护作用。然而,翻译损伤的确切性质,特别是受疾病影响的特定蛋白质及其对治疗性 UPR 调节的反应,仍知之甚少。我们使用非典型氨基酸标记 (NCAT) 来测量有和没有曲唑酮治疗的朊病毒病小鼠大脑中的新合成蛋白质,包括整个海马体和细胞特异性的。在疾病过程中,新生蛋白质组的主要变化发生在海马体神经元和星形胶质细胞中的突触、细胞骨架和线粒体蛋白质中。值得注意的是,曲唑酮治疗仅 2 周就使海马体中的整个疾病新生蛋白质组恢复到健康、未感染小鼠的水平,主要是恢复了与突触和线粒体功能相关的蛋白质。平行地,曲唑酮治疗恢复了与疾病相关的突触和线粒体及其功能的下降至野生型水平。总之,这项研究增加了我们对翻译抑制如何通过突触和线粒体毒性导致神经退行性变的理解,通过消耗对其功能至关重要的关键蛋白质导致毒性。此外,它通过逆转这种毒性为通过翻译调节治疗神经退行性疾病提供了曲唑酮的神经保护机制的新见解。
J Biol Chem. 2014-7-18
Prion. 2009-10-2
Acta Neuropathol. 2015-11
Curr Neuropharmacol. 2025
J Oral Facial Pain Headache. 2024-6
Front Immunol. 2024
Front Mol Neurosci. 2024-7-1
Curr Opin Neurobiol. 2024-8
Proc Natl Acad Sci U S A. 2020-12-29
J Proteome Res. 2021-1-1