Suppr超能文献

朊病毒神经退行性变:在突触处开始和停止。

Prion neurodegeneration: starts and stops at the synapse.

机构信息

MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK.

出版信息

Prion. 2009 Oct-Dec;3(4):195-201. doi: 10.4161/pri.3.4.9981. Epub 2009 Oct 2.

Abstract

Synaptic dysfunction is a key process in the evolution of many neurodegenerative diseases, with synaptic loss preceding that of neuronal cell bodies. In Alzheimer, Huntington, and prion diseases early synaptic changes correlate with cognitive and motor decline, and altered synaptic function may also underlie deficits in a number of psychiatric and neurodevelopmental conditions. The formation, remodelling and elimination of spines and synapses are continual physiological processes, moulding cortical architecture, underpinning the abilities to learn and remember. In disease, however, particularly in protein misfolding neurodegenerative disorders, lost synapses are not replaced and this loss is followed by neuronal death. These two processes are separately regulated, with mechanistic, spatial and temporal segregation of the death 'routines' of synapses and cell bodies. Recent insights into the reversibility of synaptic dysfunction in a mouse model of prion disease at neurophysiological, behavioral and morphological levels call for a deeper analysis of the mechanisms underlying neurotoxicity at the synapse, and have important implications for therapy of prion and other neurodegenerative disorders.

摘要

突触功能障碍是许多神经退行性疾病演变过程中的一个关键过程,突触的丧失先于神经元细胞体的丧失。在阿尔茨海默病、亨廷顿病和朊病毒病中,早期突触变化与认知和运动能力下降相关,而突触功能的改变也可能是许多精神和神经发育疾病的基础。棘突和突触的形成、重塑和消除是持续的生理过程,塑造了皮质结构,为学习和记忆能力提供了基础。然而,在疾病中,特别是在蛋白质错误折叠的神经退行性疾病中,丢失的突触不会被替换,并且随后会发生神经元死亡。这两个过程是分开调节的,突触和神经元细胞体的死亡“程序”在机制、空间和时间上是分离的。最近在朊病毒病的小鼠模型中,在神经生理学、行为和形态学水平上对突触功能障碍的可逆性有了深入的了解,这需要对突触神经毒性的机制进行更深入的分析,并对朊病毒病和其他神经退行性疾病的治疗具有重要意义。

相似文献

1
Prion neurodegeneration: starts and stops at the synapse.
Prion. 2009 Oct-Dec;3(4):195-201. doi: 10.4161/pri.3.4.9981. Epub 2009 Oct 2.
2
Dysfunction and recovery of synapses in prion disease: implications for neurodegeneration.
Biochem Soc Trans. 2010 Apr;38(2):482-7. doi: 10.1042/BST0380482.
3
Silencing synapses: a route to understanding synapse degeneration in chronic neurodegenerative disease.
Prion. 2013 Mar-Apr;7(2):147-50. doi: 10.4161/pri.23327. Epub 2013 Jan 28.
4
Morphological and functional abnormalities in mitochondria associated with synaptic degeneration in prion disease.
Am J Pathol. 2010 Sep;177(3):1411-21. doi: 10.2353/ajpath.2010.091037. Epub 2010 Jul 22.
5
The role of activity in synaptic degeneration in a protein misfolding disease, prion disease.
PLoS One. 2012;7(7):e41182. doi: 10.1371/journal.pone.0041182. Epub 2012 Jul 16.
6
Limbic system synaptic dysfunctions associated with prion disease onset.
Acta Neuropathol Commun. 2024 Dec 20;12(1):192. doi: 10.1186/s40478-024-01905-w.
7
Protein misfolding and neurodegeneration.
Arch Neurol. 2008 Feb;65(2):184-9. doi: 10.1001/archneurol.2007.56.
8
Non-cell autonomous astrocyte-mediated neuronal toxicity in prion diseases.
Acta Neuropathol Commun. 2021 Feb 5;9(1):22. doi: 10.1186/s40478-021-01123-8.
9
Sustained translational repression by eIF2α-P mediates prion neurodegeneration.
Nature. 2012 May 6;485(7399):507-11. doi: 10.1038/nature11058.
10
Molecular basis of cerebral neurodegeneration in prion diseases.
FEBS J. 2007 Feb;274(3):606-11. doi: 10.1111/j.1742-4658.2007.05633.x.

引用本文的文献

1
Optical, contact-free assessment of brain tissue stiffness and neurodegeneration.
Biomed Opt Express. 2025 Jan 6;16(2):447-459. doi: 10.1364/BOE.545580. eCollection 2025 Feb 1.
2
The Role of the Complement System in Synaptic Pruning after Stroke.
Aging Dis. 2024 Jun 25;16(3):1452-1470. doi: 10.14336/AD.2024.0373.
3
The integrated stress response in brain diseases: A double-edged sword for proteostasis and synapses.
Curr Opin Neurobiol. 2024 Aug;87:102886. doi: 10.1016/j.conb.2024.102886. Epub 2024 Jun 19.
4
Mutation of the ALS-/FTD-Associated RNA-Binding Protein FUS Affects Axonal Development.
J Neurosci. 2024 Jul 3;44(27):e2148232024. doi: 10.1523/JNEUROSCI.2148-23.2024.
5
Prion protein conversion at two distinct cellular sites precedes fibrillisation.
Nat Commun. 2023 Dec 15;14(1):8354. doi: 10.1038/s41467-023-43961-1.
7
Adipose-derived mesenchymal stromal cells decrease prion-induced glial inflammation in vitro.
Sci Rep. 2022 Dec 29;12(1):22567. doi: 10.1038/s41598-022-26628-7.
10
A New Take on Prion Protein Dynamics in Cellular Trafficking.
Int J Mol Sci. 2020 Oct 20;21(20):7763. doi: 10.3390/ijms21207763.

本文引用的文献

1
Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13594-9. doi: 10.1073/pnas.0901402106. Epub 2009 Jul 24.
2
Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers.
Nature. 2009 Feb 26;457(7233):1128-32. doi: 10.1038/nature07761.
3
A miRNA signature of prion induced neurodegeneration.
PLoS One. 2008;3(11):e3652. doi: 10.1371/journal.pone.0003652. Epub 2008 Nov 6.
4
Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease.
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10238-43. doi: 10.1073/pnas.0802759105. Epub 2008 Jul 16.
5
Prion protein attenuates excitotoxicity by inhibiting NMDA receptors.
J Cell Biol. 2008 May 5;181(3):551-65. doi: 10.1083/jcb.200711002. Epub 2008 Apr 28.
6
Dendritic pathology in prion disease starts at the synaptic spine.
J Neurosci. 2007 Jun 6;27(23):6224-33. doi: 10.1523/JNEUROSCI.5062-06.2007.
8
Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide.
Nat Rev Mol Cell Biol. 2007 Feb;8(2):101-12. doi: 10.1038/nrm2101.
9
An integrated, temporal study of the behavioural, electrophysiological and neuropathological consequences of murine prion disease.
Neurobiol Dis. 2006 May;22(2):363-73. doi: 10.1016/j.nbd.2005.12.002. Epub 2006 Jan 23.
10
Tau suppression in a neurodegenerative mouse model improves memory function.
Science. 2005 Jul 15;309(5733):476-81. doi: 10.1126/science.1113694.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验