MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK.
Prion. 2009 Oct-Dec;3(4):195-201. doi: 10.4161/pri.3.4.9981. Epub 2009 Oct 2.
Synaptic dysfunction is a key process in the evolution of many neurodegenerative diseases, with synaptic loss preceding that of neuronal cell bodies. In Alzheimer, Huntington, and prion diseases early synaptic changes correlate with cognitive and motor decline, and altered synaptic function may also underlie deficits in a number of psychiatric and neurodevelopmental conditions. The formation, remodelling and elimination of spines and synapses are continual physiological processes, moulding cortical architecture, underpinning the abilities to learn and remember. In disease, however, particularly in protein misfolding neurodegenerative disorders, lost synapses are not replaced and this loss is followed by neuronal death. These two processes are separately regulated, with mechanistic, spatial and temporal segregation of the death 'routines' of synapses and cell bodies. Recent insights into the reversibility of synaptic dysfunction in a mouse model of prion disease at neurophysiological, behavioral and morphological levels call for a deeper analysis of the mechanisms underlying neurotoxicity at the synapse, and have important implications for therapy of prion and other neurodegenerative disorders.
突触功能障碍是许多神经退行性疾病演变过程中的一个关键过程,突触的丧失先于神经元细胞体的丧失。在阿尔茨海默病、亨廷顿病和朊病毒病中,早期突触变化与认知和运动能力下降相关,而突触功能的改变也可能是许多精神和神经发育疾病的基础。棘突和突触的形成、重塑和消除是持续的生理过程,塑造了皮质结构,为学习和记忆能力提供了基础。然而,在疾病中,特别是在蛋白质错误折叠的神经退行性疾病中,丢失的突触不会被替换,并且随后会发生神经元死亡。这两个过程是分开调节的,突触和神经元细胞体的死亡“程序”在机制、空间和时间上是分离的。最近在朊病毒病的小鼠模型中,在神经生理学、行为和形态学水平上对突触功能障碍的可逆性有了深入的了解,这需要对突触神经毒性的机制进行更深入的分析,并对朊病毒病和其他神经退行性疾病的治疗具有重要意义。
Prion. 2009-10-2
Biochem Soc Trans. 2010-4
Acta Neuropathol Commun. 2024-12-20
Arch Neurol. 2008-2
Acta Neuropathol Commun. 2021-2-5
Biomed Opt Express. 2025-1-6
Aging Dis. 2024-6-25
Curr Opin Neurobiol. 2024-8
Nat Commun. 2023-12-15
Int J Mol Sci. 2020-10-20
Proc Natl Acad Sci U S A. 2009-8-11
PLoS One. 2008
Proc Natl Acad Sci U S A. 2008-7-22
J Cell Biol. 2008-5-5
J Neurosci. 2007-6-6
Nat Rev Mol Cell Biol. 2007-2