Kedia Komal, Harris Rachel, Ekroos Kim, Moser Kelly W, DeBord Daniel, Tiberi Paolo, Goracci Laura, Zhang Nanyan Rena, Wang Weixun, Spellman Daniel S, Bateman Kevin
Merck & Co., Inc., West Point, Pennsylvania 19486, United States.
MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States.
J Am Soc Mass Spectrom. 2023 Oct 4;34(10):2176-2186. doi: 10.1021/jasms.3c00157. Epub 2023 Sep 13.
Lipids are structurally diverse molecules that play a pivotal role in a plethora of biological processes. However, deciphering the biological roles of the specific lipids is challenging due to the existence of numerous isomers. This high chemical complexity of the lipidome is one of the major challenges in lipidomics research, as the traditional liquid chromatography-mass spectrometry (LC-MS) based approaches are often not powerful enough to resolve these isomeric and isobaric nuances within complex samples. Thus, lipids are uniquely suited to the benefits provided by multidimensional liquid chromatography-ion mobility-mass spectrometry (LC-IM-MS) analysis. However, many forms of lipid isomerism, including double-bond positional isomers and regioisomers, are structurally similar such that their collision cross section (CCS) differences are unresolvable via conventional IM approaches. Here we evaluate the performance of a high resolution ion mobility (HRIM) system based on structures for lossless ion manipulation (SLIM) technology interfaced to a high resolution quadrupole time-of-flight (QTOF) analyzer to address the noted lipidomic isomerism challenge. SLIM implements the traveling wave ion mobility technique along an ∼13 m ion path, providing longer path lengths to enable improved separation of isomeric features. We demonstrate the power of HRIM-MS to dissect isomeric PC standards differing only in double bond (DB) and stereospecific number (SN) positions. The partial separation of protonated DB isomers is significantly enhanced when they are analyzed as metal adducts. For sodium adducts, we achieve close to baseline separation of three different PC 18:1/18:1 isomers with different -double bond locations. Similarly, PC 18:1/18:1 (-9) can be resolved from the corresponding PC 18:1/18:1 (-9) form. The separation capacity is further enhanced when using silver ion doping, enabling the baseline separation of regioisomers that cannot be resolved when measured as sodium adducts. The sensitivity and reproducibility of the approach were assessed, and the performance for more complex mixtures was benchmarked by identifying PC isomers in total brain and liver lipid extracts.
脂质是结构多样的分子,在众多生物过程中发挥着关键作用。然而,由于存在大量异构体,解读特定脂质的生物学作用具有挑战性。脂质组的这种高度化学复杂性是脂质组学研究的主要挑战之一,因为基于传统液相色谱 - 质谱(LC - MS)的方法通常不足以解析复杂样品中的这些同分异构和同量异位细微差别。因此,脂质特别适合多维液相色谱 - 离子淌度 - 质谱(LC - IM - MS)分析所带来的优势。然而,许多形式的脂质异构现象,包括双键位置异构体和区域异构体,在结构上相似,以至于它们的碰撞截面(CCS)差异无法通过传统的离子淌度方法分辨。在此,我们评估了一种基于无损离子操纵结构(SLIM)技术的高分辨率离子淌度(HRIM)系统与高分辨率四极杆飞行时间(QTOF)分析仪联用的性能,以应对上述脂质组学异构挑战。SLIM沿着约13米的离子路径实施行波离子淌度技术,提供更长的路径长度以实现对异构特征的更好分离。我们展示了HRIM - MS剖析仅在双键(DB)和立体专一编号(SN)位置不同的异构PC标准品的能力。当质子化的DB异构体作为金属加合物进行分析时,它们的部分分离得到显著增强。对于钠加合物,我们实现了三种具有不同双键位置的不同PC 18:1/18:1异构体接近基线的分离。同样,PC 18:1/18:1(-9)可以与相应的PC 18:1/18:1(-9)形式区分开来。使用银离子掺杂时,分离能力进一步增强,能够实现区域异构体的基线分离,而这些区域异构体在作为钠加合物测量时无法分辨。评估了该方法的灵敏度和重现性,并通过鉴定全脑和肝脏脂质提取物中的PC异构体对更复杂混合物的性能进行了基准测试。