Suppr超能文献

通过单层二硫化钼中的缺陷工程实现异构体鉴别

Isomer Discrimination via Defect Engineering in Monolayer MoS.

作者信息

Han Bin, Gali Sai Manoj, Dai Shuting, Beljonne David, Samorì Paolo

机构信息

Université de Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France.

Université de Mons, Laboratory for Chemistry of Novel Materials, Place du Parc 20, Mons 7000, Belgium.

出版信息

ACS Nano. 2023 Sep 26;17(18):17956-17965. doi: 10.1021/acsnano.3c04194. Epub 2023 Sep 13.

Abstract

The all-surface nature of two-dimensional (2D) materials renders them highly sensitive to environmental changes, enabling the on-demand tailoring of their physical properties. Transition metal dichalcogenides, such as 2H molybdenum disulfide (MoS), can be used as a sensory material capable of discriminating molecules possessing a similar structure with a high sensitivity. Among them, the identification of isomers represents an unexplored and challenging case. Here, we demonstrate that chemical functionalization of defect-engineered monolayer MoS enables isomer discrimination via a field-effect transistor readout. A multiscale characterization comprising X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, and electrical measurement corroborated by theoretical calculations revealed that monolayer MoS exhibits exceptional sensitivity to the differences in the dipolar nature of molecules arising from their chemical structure such as the one in difluorobenzenethiol isomers, allowing their precise recognition. Our findings underscore the potential of 2D materials for molecular discrimination purposes, in particular for the identification of complex isomers.

摘要

二维(2D)材料的全表面性质使其对环境变化高度敏感,从而能够按需定制其物理性质。过渡金属二硫属化物,如2H硫化钼(MoS),可用作能够高灵敏度区分具有相似结构分子的传感材料。其中,异构体的识别是一个尚未探索且具有挑战性的情况。在这里,我们证明了缺陷工程化单层MoS的化学功能化能够通过场效应晶体管读出实现异构体区分。由理论计算证实的包括X射线光电子能谱、拉曼光谱、光致发光光谱和电学测量在内的多尺度表征表明,单层MoS对分子因其化学结构(如二氟苯硫醇异构体中的结构)产生的偶极性质差异表现出非凡的灵敏度,从而能够对其进行精确识别。我们的研究结果强调了二维材料在分子区分方面的潜力,特别是在识别复杂异构体方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验