Department of Electrical and Computer Engineering, The University of Texas at Austin , Austin, Texas 78712, United States.
Nano Lett. 2015 Jan 14;15(1):346-53. doi: 10.1021/nl5036397. Epub 2014 Dec 18.
Controlling the band gap by tuning the lattice structure through pressure engineering is a relatively new route for tailoring the optoelectronic properties of two-dimensional (2D) materials. Here, we investigate the electronic structure and lattice vibrational dynamics of the distorted monolayer 1T-MoS2 (1T') and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 eV, which is the highest reported for a 2D transition metal dichalcogenide (TMD) material. DFT calculations reveal a subsequent decrease in the band gap with eventual metallization of the monolayer 2H-MoS2, an overall complex structure-property relation due to the rich band structure of MoS2. Remarkably, the metastable 1T'-MoS2 metallic state remains invariant with pressure, with the J2, A1g, and E2g modes becoming dominant at high pressures. This substantial reversible tunability of the electronic and vibrational properties of the MoS2 family can be extended to other 2D TMDs. These results present an important advance toward controlling the band structure and optoelectronic properties of monolayer MoS2 via pressure, which has vital implications for enhanced device applications.
通过压力工程调节晶格结构来控制带隙是一种相对较新的方法,可以调整二维(2D)材料的光电性能。在这里,我们通过金刚石对顶砧(DAC)和密度泛函理论(DFT)计算研究了扭曲的单层 1T-MoS2(1T')和单层 2H-MoS2 的电子结构和晶格振动动力学。单层 2H-MoS2 的直接光学带隙从 1.85 eV 增加到 2.08 eV,增加了 11.7%,这是报道的二维过渡金属二硫属化物(TMD)材料中的最高值。DFT 计算表明,带隙随后减小,最终单层 2H-MoS2 发生金属化,由于 MoS2 的丰富能带结构,导致整体复杂的结构-性能关系。值得注意的是,亚稳的 1T'-MoS2 金属态在压力下保持不变,在高压下 J2、A1g 和 E2g 模式变得占主导地位。MoS2 家族的电子和振动性质的这种显著的可逆可调性可以扩展到其他二维 TMD。这些结果朝着通过压力控制单层 MoS2 的能带结构和光电性能迈出了重要一步,这对增强器件应用具有重要意义。