School of Data Science, The University of Virginia, Charlottesville, VA 22903.
Department of Pediatrics, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242.
eNeuro. 2023 Sep 26;10(9). doi: 10.1523/ENEURO.0148-23.2023. Print 2023 Sep.
Neuronal cell body analysis is crucial for quantifying changes in neuronal sizes under different physiological and pathologic conditions. Neuronal cell body detection and segmentation mainly rely on manual or pseudo-manual annotations. Manual annotation of neuronal boundaries is time-consuming, requires human expertise, and has intra/interobserver variances. Also, determining where the neuron's cell body ends and where the axons and dendrites begin is taxing. We developed a deep-learning-based approach that uses a state-of-the-art shifted windows (Swin) transformer for automated, reproducible, fast, and unbiased 2D detection and segmentation of neuronal somas imaged in mouse acute brain slices by multiphoton microscopy. We tested our Swin algorithm during different experimental conditions of low and high signal fluorescence. Our algorithm achieved a mean Dice score of 0.91, a precision of 0.83, and a recall of 0.86. Compared with two different convolutional neural networks, the Swin transformer outperformed them in detecting the cell boundaries of GCamP6s expressing neurons. Thus, our Swin transform algorithm can assist in the fast and accurate segmentation of fluorescently labeled neuronal cell bodies in thick acute brain slices. Using our flexible algorithm, researchers can better study the fluctuations in neuronal soma size during physiological and pathologic conditions.
神经元细胞体分析对于量化不同生理和病理条件下神经元大小的变化至关重要。神经元细胞体的检测和分割主要依赖于手动或伪手动注释。手动注释神经元边界既耗时又需要人类专业知识,并且存在观察者内和观察者间的差异。此外,确定神经元细胞体的末端和轴突和树突的起始位置也很费力。我们开发了一种基于深度学习的方法,该方法使用最先进的移位窗口(Swin)转换器,通过多光子显微镜对急性脑切片中的神经元进行自动、可重复、快速且无偏的 2D 检测和分割。我们在低信号荧光和高信号荧光的不同实验条件下测试了我们的 Swin 算法。我们的算法实现了 0.91 的平均 Dice 评分、0.83 的精度和 0.86 的召回率。与两种不同的卷积神经网络相比,Swin 转换器在检测表达 GCamP6s 的神经元的细胞边界方面表现优于它们。因此,我们的 Swin 变换算法可以帮助快速准确地分割厚急性脑切片中荧光标记的神经元细胞体。使用我们灵活的算法,研究人员可以更好地研究生理和病理条件下神经元体大小的波动。