Xiao Feng, Challa Sasi Pavankumar, Alinezhad Ali, Sun Runze, Abdulmalik Ali Mansurat
Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States.
Department of Civil Engineering, University of North Dakota, 243 Centennial Drive Stop 8115, Grand Forks, North Dakota 58202, United States.
ACS ES T Eng. 2023 Apr 26;3(9):1370-1380. doi: 10.1021/acsestengg.3c00114. eCollection 2023 Sep 8.
In this study, we have developed an innovative thermal degradation strategy for treating per- and polyfluoroalkyl substance (PFAS)-containing solid materials. Our strategy satisfies three criteria: the ability to achieve near-complete degradation of PFASs within a short timescale, nonselectivity, and low energy cost. In our method, a metallic reactor containing a PFAS-laden sample was subjected to electromagnetic induction that prompted a rapid temperature rise of the reactor via the Joule heating effect. We demonstrated that subjecting PFASs (0.001-12 μmol) to induction heating for a brief duration (e.g., <40 s) resulted in substantial degradation (>90%) of these compounds, including recalcitrant short-chain PFASs and perfluoroalkyl sulfonic acids. This finding prompted us to conduct a detailed study of the thermal phase transitions of PFASs using thermogravimetric analysis and differential scanning calorimetry (DSC). We identified at least two endothermic DSC peaks for anionic, cationic, and zwitterionic PFASs, signifying the melting and evaporation of the melted PFASs. Melting and evaporation points of many PFASs were reported for the first time. Our data suggest that the rate-limiting step in PFAS thermal degradation is linked with phase transitions (e.g., evaporation) occurring on different time scales. When PFASs are rapidly heated to temperatures similar to those produced during induction heating, the evaporation of melted PFAS slows down, allowing for the degradation of the melted PFAS.
在本研究中,我们开发了一种创新的热降解策略,用于处理含全氟和多氟烷基物质(PFAS)的固体材料。我们的策略满足三个标准:能够在短时间内实现PFAS的近乎完全降解、无选择性以及低能量成本。在我们的方法中,将装有含PFAS样品的金属反应器置于电磁感应中,通过焦耳热效应促使反应器快速升温。我们证明,将PFAS(0.001 - 12 μmol)进行短时间(例如,<40秒)的感应加热会导致这些化合物的大量降解(>90%),包括顽固的短链PFAS和全氟烷基磺酸。这一发现促使我们使用热重分析和差示扫描量热法(DSC)对PFAS的热相变进行详细研究。我们确定了阴离子型、阳离子型和两性离子型PFAS至少有两个吸热DSC峰,这表明熔化的PFAS发生了熔化和蒸发。首次报道了许多PFAS的熔点和蒸发点。我们的数据表明,PFAS热降解中的限速步骤与在不同时间尺度上发生的相变(例如,蒸发)有关。当PFAS被快速加热到与感应加热期间产生的温度相似的温度时,熔化的PFAS的蒸发会减慢,从而使熔化的PFAS得以降解。