Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States.
Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States.
Environ Sci Technol. 2022 May 3;56(9):5355-5370. doi: 10.1021/acs.est.2c02251. Epub 2022 Apr 21.
Per- and polyfluoroalkyl substances (PFASs) are fluorinated organic chemicals that are concerning due to their environmental persistence and adverse human and ecological effects. Remediation of environmental PFAS contamination and their presence in consumer products have led to the production of solid and liquid waste streams containing high concentrations of PFASs, which require efficient and cost-effective treatment solutions. PFASs are challenging to defluorinate by conventional and advanced destructive treatment processes, and physical separation processes produce waste streams (e.g., membrane concentrate, spent activated carbon) requiring further post-treatment. Incineration and other thermal treatment processes are widely available, but their use in managing PFAS-containing wastes remains poorly understood. Under specific operating conditions, thermal treatment is expected to mineralize PFASs, but the degradation mechanisms and pathways are unknown. In this review, we critically evaluate the thermal decomposition mechanisms, pathways, and byproducts of PFASs that are crucial to the design and operation of thermal treatment processes. We highlight the analytical capabilities and challenges and identify research gaps which limit the current understanding of safely applying thermal treatment to destroy PFASs as a viable end-of-life treatment process.
全氟和多氟烷基物质(PFASs)是一类含氟有机化学品,由于其在环境中的持久性以及对人类和生态的不良影响而受到关注。环境中 PFAS 污染的修复以及其在消费产品中的存在导致了含有高浓度 PFASs 的固体废物和液体废物的产生,这些废物需要高效且具有成本效益的处理解决方案。通过传统和先进的破坏性处理工艺来脱氟 PFASs 具有挑战性,而物理分离工艺会产生需要进一步后处理的废物流(例如,膜浓缩物、废活性炭)。焚烧和其他热处理工艺广泛可用,但它们在管理含 PFAS 废物方面的应用仍了解甚少。在特定操作条件下,热处理有望使 PFASs 矿化,但降解机制和途径尚不清楚。在这篇综述中,我们批判性地评估了 PFASs 的热分解机制、途径和副产物,这些对于热处理工艺的设计和运行至关重要。我们强调了分析能力和挑战,并确定了研究空白,这些限制了目前对安全应用热处理将 PFASs 作为一种可行的寿命终结处理工艺进行破坏的理解。