Grauzeliene Sigita, Schuller Anne-Sophie, Delaite Christelle, Ostrauskaite Jolita
Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Road 19, LT-50254 Kaunas, Lithuania.
Laboratoire de Photochimie et d'Ingénierie Macromoléculaires-EA4567, Université de Haute Alsace, Université de Strasbourg, 3b Rue Alfred Werner, 68093 Mulhouse Cedex, France.
ACS Appl Polym Mater. 2023 Aug 21;5(9):6958-6965. doi: 10.1021/acsapm.3c01018. eCollection 2023 Sep 8.
The development of biobased reshapable and repairable vitrimers has received extensive attention due to the growing focus on an environmentally friendly society. Therefore, the objective of this research was to synthesize sustainable polymers with an environmentally friendly strategy combining the benefits of renewable resources, UV curing, and vitrimers. Two biobased monomers, glycerol 1,3-diglycerolate diacrylate and tetrahydrofurfuryl methacrylate, were chosen for the preparation of UV-curable resins and tested by real-time photorheometry and RT-FTIR spectroscopy to determine their suitability for digital light processing (DLP) 3D printing. DLP 3D-printed polymer showed shape memory, weldability, and repairability capabilities by triggering the dynamic transesterification process at high temperatures. The vitrimer with a weight ratio of 60:40 of glycerol 1,3-diglycerolate diacrylate and tetrahydrofurfuryl methacrylate showed shape memory properties with a recovery ratio of 100% and a 7-fold improved tensile strength compared to the original sample, confirming efficient weldability and repairability.
由于对环境友好型社会的关注度不断提高,生物基可重塑和可修复的玻璃态高聚物的发展受到了广泛关注。因此,本研究的目的是通过结合可再生资源、紫外线固化和玻璃态高聚物的优点,采用环境友好型策略合成可持续聚合物。选择了两种生物基单体,即1,3 - 二甘油丙烯酸甘油酯和甲基丙烯酸四氢糠酯,用于制备紫外线固化树脂,并通过实时光流变学和实时傅里叶变换红外光谱进行测试,以确定它们对数字光处理(DLP)3D打印的适用性。通过在高温下触发动态酯交换过程,DLP 3D打印聚合物表现出形状记忆、可焊接性和可修复性。甘油1,3 - 二甘油丙烯酸甘油酯与甲基丙烯酸四氢糠酯重量比为60:40的玻璃态高聚物表现出形状记忆性能,恢复率为100%,与原始样品相比拉伸强度提高了7倍,证实了其高效的可焊接性和可修复性。