Dahlin Lukas R, Meyers Alex W, Stefani Skylar W, Webb Ellsbeth G, Wachter Benton, Subramanian Venkataramanan, Guarnieri Michael T
Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States.
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, United States.
Front Bioeng Biotechnol. 2023 Aug 29;11:1162745. doi: 10.3389/fbioe.2023.1162745. eCollection 2023.
Rising global greenhouse gas emissions and the impacts of resultant climate change necessitate development and deployment of carbon capture and conversion technologies. Amongst the myriad of bio-based conversion approaches under evaluation, a formate bio-economy has recently been proposed, wherein CO-derived formate serves as a substrate for concurrent carbon and energy delivery to microbial systems. To date, this approach has been explored in chemolithotrophic and heterotrophic organisms via native or engineered formatotrophy. However, utilization of this concept in phototrophic organisms has yet to be reported. Herein, we have taken the first steps to establish formate utilization in , a recently characterized eukaryotic microalga with facile genetic tools and promising applied biotechnology traits. Plastidial heterologous expression of a formate dehydrogenase (FDH) enabled growth on formate as a carbon and energy source. Further, FDH expression enhanced cultivation capacity on ambient CO, underscoring the potential for bypass of conventional CO capture and concentration limitations. This work establishes a photoformatotrophic cultivation regime that leverages light energy-driven formate utilization. The resultant photosynthetic formate platform has widespread implications for applied phototrophic cultivation systems and the bio-economy at large.
全球温室气体排放量不断上升以及由此产生的气候变化影响,使得碳捕获与转化技术的开发和应用成为必要。在众多正在评估的生物基转化方法中,最近有人提出了一种甲酸盐生物经济模式,即一氧化碳衍生的甲酸盐作为向微生物系统同时输送碳和能量的底物。迄今为止,这种方法已通过天然或工程化的甲酸盐营养在化能自养生物和异养生物中进行了探索。然而,在光合生物中利用这一概念的情况尚未见报道。在此,我们迈出了第一步,在一种最近被鉴定的具有简便遗传工具和有前景的应用生物技术特性的真核微藻中建立甲酸盐利用体系。甲酸盐脱氢酶(FDH)的质体异源表达使该微藻能够以甲酸盐作为碳源和能源生长。此外,FDH的表达增强了在环境二氧化碳条件下的培养能力,凸显了绕过传统二氧化碳捕获和浓缩限制的潜力。这项工作建立了一种利用光能驱动甲酸盐利用的光合甲酸盐营养培养模式。由此产生的光合甲酸盐平台对应用光合培养系统和整个生物经济具有广泛影响。