Suppr超能文献

细胞质甲酸脱氢酶 FdsABG 的 FdsBG 亚基的晶体学和动力学分析。

Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from .

机构信息

Department of Biochemistry, University of California, Riverside, California 92521.

Department of Biochemistry, University of California, Riverside, California 92521

出版信息

J Biol Chem. 2020 May 8;295(19):6570-6585. doi: 10.1074/jbc.RA120.013264. Epub 2020 Apr 5.

Abstract

Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, FeS in FdsB and FeS in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNH, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH, initially formed via NADH-mediated reduction, to the FeS cluster. This FeS cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the -face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD binding in proper NADH dehydrogenases.

摘要

甲酸盐氧化为二氧化碳是一碳化合物代谢中的关键反应,其逆反应代表了许多厌氧生物的乙酰生成和甲烷生成分支中碳同化的第一步。含钼的脱氢酶 FdsABG 是一种可溶性 NAD 依赖性甲酸盐脱氢酶,也是 NADH 脱氢酶超家族的成员。在这里,我们展示了具有和不具有结合态 NADH 的来自产氢菌 H16 的细胞质 FdsABG 甲酸盐脱氢酶的 FdsBG 亚复合物的首个结构。这些结构表明,两个铁硫簇,FdsB 中的 FeS 和 FdsG 中的 FeS,比其他 NADH 脱氢酶更接近 FMN。对 FdsBG 的 NADH 还原的快速动力学研究和快速冷冻淬灭样品的 EPR 测量鉴定了一种中性黄素半醌,FMNH,以前没有观察到它参与 FdsABG 全酶的 NADH 介导还原。我们发现,这种半醌通过从最初通过 NADH 介导的还原形成的完全还原的 FMNH 中转移一个电子到 FeS 簇而形成。这个 FeS 簇不是连接 FdsB 的 FMN 与 FdsA 的活性位点钼中心的铁硫簇连接的有效链的一部分。根据 NADH 结合结构,烟酰胺环堆积在 FMN 的 -面上。然而,NADH 结合大大降低了 FMN 的异咯嗪环的电子密度,并诱导 FMN 结合口袋中残基的构象变化,在适当的 NADH 脱氢酶中,这些残基在 NAD 结合时会发生肽键翻转。

相似文献

1
Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from .
J Biol Chem. 2020 May 8;295(19):6570-6585. doi: 10.1074/jbc.RA120.013264. Epub 2020 Apr 5.
2
Spectroscopic and Kinetic Properties of the Molybdenum-containing, NAD+-dependent Formate Dehydrogenase from Ralstonia eutropha.
J Biol Chem. 2016 Jan 15;291(3):1162-74. doi: 10.1074/jbc.M115.688457. Epub 2015 Nov 9.
3
Deconvolution of reduction potentials of formate dehydrogenase from Cupriavidus necator.
J Biol Inorg Chem. 2019 Sep;24(6):889-898. doi: 10.1007/s00775-019-01701-1. Epub 2019 Aug 28.
4
Synthesis of Formate from CO Gas Catalyzed by an O-Tolerant NAD-Dependent Formate Dehydrogenase and Glucose Dehydrogenase.
Biochemistry. 2019 Apr 9;58(14):1861-1868. doi: 10.1021/acs.biochem.8b01301. Epub 2019 Mar 18.
6
Redox Characterization of the Complex Molybdenum Enzyme Formate Dehydrogenase from .
J Am Chem Soc. 2023 Nov 29;145(47):25850-25863. doi: 10.1021/jacs.3c10199. Epub 2023 Nov 15.
7
Efficient reduction of CO by the molybdenum-containing formate dehydrogenase from ().
J Biol Chem. 2017 Oct 13;292(41):16872-16879. doi: 10.1074/jbc.M117.785576. Epub 2017 Aug 7.
8
The Reversible Electrochemical Interconversion of Formate and CO by Formate Dehydrogenase from .
J Phys Chem B. 2023 Oct 5;127(39):8382-8392. doi: 10.1021/acs.jpcb.3c04652. Epub 2023 Sep 20.
9
Structural analysis of the fds operon encoding the NAD+-linked formate dehydrogenase of Ralstonia eutropha.
J Biol Chem. 1998 Oct 9;273(41):26349-60. doi: 10.1074/jbc.273.41.26349.
10
Redox potentials elucidate the electron transfer pathway of NAD-dependent formate dehydrogenases.
J Inorg Biochem. 2024 Apr;253:112487. doi: 10.1016/j.jinorgbio.2024.112487. Epub 2024 Jan 20.

引用本文的文献

3
Reversible enzyme-catalysed NAD/NADH electrochemistry.
Chem Sci. 2025 Mar 4;16(14):6035-6049. doi: 10.1039/d5sc00570a. eCollection 2025 Apr 2.
4
5
Conditional essentiality of the 11-subunit complex I-like enzyme in strict anaerobes: the case of strain DCB-2.
Front Microbiol. 2024 Jun 26;15:1388961. doi: 10.3389/fmicb.2024.1388961. eCollection 2024.
6
Structural and biochemical characterization of the M405S variant of Desulfovibrio vulgaris formate dehydrogenase.
Acta Crystallogr F Struct Biol Commun. 2024 May 1;80(Pt 5):98-106. doi: 10.1107/S2053230X24003911.
7
Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology.
Molecules. 2023 Dec 24;29(1):120. doi: 10.3390/molecules29010120.
8
Changing the Electron Acceptor Specificity of Formate Dehydrogenase from NAD to NADP.
Int J Mol Sci. 2023 Nov 8;24(22):16067. doi: 10.3390/ijms242216067.
9
Heterologous expression of formate dehydrogenase enables photoformatotrophy in the emerging model microalga, .
Front Bioeng Biotechnol. 2023 Aug 29;11:1162745. doi: 10.3389/fbioe.2023.1162745. eCollection 2023.
10
Spectroscopic Studies of Mononuclear Molybdenum Enzyme Centers.
Molecules. 2022 Jul 27;27(15):4802. doi: 10.3390/molecules27154802.

本文引用的文献

1
Complete Genome Sequence of Cupriavidus necator H16 (DSM 428).
Microbiol Resour Announc. 2019 Sep 12;8(37):e00814-19. doi: 10.1128/MRA.00814-19.
2
3
Synthesis of Formate from CO Gas Catalyzed by an O-Tolerant NAD-Dependent Formate Dehydrogenase and Glucose Dehydrogenase.
Biochemistry. 2019 Apr 9;58(14):1861-1868. doi: 10.1021/acs.biochem.8b01301. Epub 2019 Mar 18.
4
Iron-sulfur clusters have no right angles.
Acta Crystallogr D Struct Biol. 2019 Jan 1;75(Pt 1):16-20. doi: 10.1107/S205979831801519X. Epub 2019 Jan 4.
5
Reductive activation of CO by formate dehydrogenases.
Methods Enzymol. 2018;613:277-295. doi: 10.1016/bs.mie.2018.10.013. Epub 2018 Nov 23.
6
Five decades of research on mitochondrial NADH-quinone oxidoreductase (complex I).
Biol Chem. 2018 Oct 25;399(11):1249-1264. doi: 10.1515/hsz-2018-0164.
7
SWISS-MODEL: homology modelling of protein structures and complexes.
Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303. doi: 10.1093/nar/gky427.
8
Automated evaluation of quaternary structures from protein crystals.
PLoS Comput Biol. 2018 Apr 30;14(4):e1006104. doi: 10.1371/journal.pcbi.1006104. eCollection 2018 Apr.
9
DIALS: implementation and evaluation of a new integration package.
Acta Crystallogr D Struct Biol. 2018 Feb 1;74(Pt 2):85-97. doi: 10.1107/S2059798317017235.
10
Protein Engineering for Nicotinamide Coenzyme Specificity in Oxidoreductases: Attempts and Challenges.
Front Microbiol. 2018 Feb 14;9:194. doi: 10.3389/fmicb.2018.00194. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验