Suppr超能文献

基于遥感数据提取的地表温度识别地热潜力。

Identification of geothermal potential based on land surface temperature derived from remotely sensed data.

机构信息

Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China.

School of Geographical Sciences and Tourism, Zhaotong University, Zhaotong, 657000, China.

出版信息

Environ Sci Pollut Res Int. 2023 Oct;30(47):104726-104741. doi: 10.1007/s11356-023-29678-0. Epub 2023 Sep 14.

Abstract

With the continuous development of thermal infrared remote sensing technology and the maturation of remote sensing inversion algorithms based on surface temperatures, identifying high-temperature anomalous areas by inverting surface temperatures has become an crucial approach to finding geothermal potential areas. The eastern region of Longyang in western Yunnan Province is renowned for geothermal resources, though the distribution area of geothermal potential remains unknown. Therefore, this study used Landsat-8 TIRS data and four surface temperature inversion algorithms, namely, mono-window algorithm, single-channel algorithm, Du split window algorithm (SWD), and Jiménez-Muñoz split window algorithm (SWJ), to explore the astern region of Longyang. The inversion results were compared with Moderate Resolution Imaging Spectroradiometer Land Surface Temperature (MODIS LST) results for analysis and cross-validation to select the optimal algorithm. A multi-view remote sensing temperature anomaly information extraction method was adopted. Moreover, the overall threshold method, the fracture structure buffer method, and the joint analysis of diurnal temporal data were combined for the reduction of the thermal anomaly area as well as for comprehensively defining the geothermal prospective area in the study area. The results demonstrated that the mono-window algorithm had the highest accuracy with a Pearson coefficient of 0.77, which is more suitable for the surface temperature inversion in Longyang area. Furthermore, three geothermal anomalies (A, B, and C) were identified in the study area, with larger thermal anomaly in A and C, but a smaller one in B. All three areas had hot spring points verified, with A and C exhibiting more significant development potential. The research results provide a reliable methodological basis for the development of geothermal resources in the region.

摘要

随着热红外遥感技术的不断发展和基于地表温度的遥感反演算法的成熟,通过反演地表温度来识别高温异常区已成为寻找地热潜力区的重要方法。滇西龙羊东部地区以地热资源而闻名,但地热潜力区的分布范围尚不清楚。因此,本研究利用 Landsat-8 TIRS 数据和四种地表温度反演算法,即单窗算法、单通道算法、Du 分裂窗口算法(SWD)和 Jiménez-Muñoz 分裂窗口算法(SWJ),对滇西龙羊东部地区进行了研究。将反演结果与中分辨率成像光谱仪地表温度(MODIS LST)结果进行对比分析和交叉验证,以选择最优算法。采用多视遥感温度异常信息提取方法。此外,采用整体阈值法、断裂构造缓冲区法和昼夜时间数据联合分析,对热异常区进行了缩减,并对研究区的地热远景区进行了综合定义。结果表明,单窗算法的精度最高,皮尔逊系数为 0.77,更适合龙羊地区的地表温度反演。此外,在研究区识别出三个地热异常区(A、B 和 C),其中 A 和 C 的热异常较大,而 B 的热异常较小。所有三个区域都有温泉点得到验证,A 和 C 具有更大的开发潜力。研究结果为该地区地热资源的开发提供了可靠的方法学基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验