Suppr超能文献

利用单窗算法、劈窗算法和光谱辐射模型,对埃塞俄比亚12个行政区的地表温度变化响应植被指数进行时间序列分析的数据。

Data on time series analysis of land surface temperature variation in response to vegetation indices in twelve Wereda of Ethiopia using mono window, split window algorithm and spectral radiance model.

作者信息

Abdul Athick A S Mohammed, Shankar K, Naqvi Hasan Raja

机构信息

Taiwan International Graduate Program (TIGP) - Earth System Science Program, Academia Sinica, Taipei 11529, Taiwan.

Graduate Institute of Hydrology and Oceanic Science, National Central University, Taoyuan, Taiwan.

出版信息

Data Brief. 2019 Nov 9;27:104773. doi: 10.1016/j.dib.2019.104773. eCollection 2019 Dec.

Abstract

In the past, decadal time-series analysis has been done traditionally using meteorological data. In particular, decadal analysis of land surface temperature has been a major issue due to the unavailability of remote sensing techniques. But, nowadays, with the recent advances in remote sensing techniques and modern software Land Surface Temperature (LST) can be calculated through the thermal bands. LST can be estimated through many algorithms such as Split-window, Mono-Window (SW), Single-Channel (SH), among others. LST was estimated using Mono-Window algorithm on Landsat-5 TM, Landsat-7 ETM+ and split window algorithm on Landsat-8 OLI/TIRS Thermal Infrared (TIR) bands. Vegetation index was obtained by using Normalized Difference Vegetation Index (NDVI) from red and Near-Infrared (NIR) bands. NDVI has been effectively used in vegetation monitoring and to analyze the vegetation in responses to climate change such as surface temperature variation. The twelve Weredas (third-level administrative divisions) of Ethiopia which are highly prone to drought were selected to investigate decadal land surface temperature variations and its impact on the surrounding environment, especially on vegetation cover. Ten Landsat images of three different sensors from 1999 to 2018 were used as the basic data source. The processed data of surface temperature and vegetation indices showed a strong correlation. The higher LST values indicate the smaller NDVI and vice versa and it is also identified the areas with high temperature being barren regions and areas with low temperature covered with more vegetation.

摘要

过去,年代际时间序列分析传统上是使用气象数据来进行的。特别是,由于缺乏遥感技术,陆地表面温度的年代际分析一直是一个主要问题。但是,如今随着遥感技术和现代软件的最新进展,可以通过热波段计算陆地表面温度(LST)。LST可以通过许多算法来估算,例如分裂窗算法、单窗算法(SW)、单通道算法(SH)等。利用单窗算法在陆地卫星5号专题制图仪(TM)、陆地卫星7号增强型专题制图仪(ETM+)上估算LST,并利用分裂窗算法在陆地卫星8号运营陆地成像仪/热红外传感器(OLI/TIRS)的热红外(TIR)波段上估算LST。植被指数是通过利用红波段和近红外(NIR)波段的归一化差值植被指数(NDVI)获得的。NDVI已被有效地用于植被监测,并用于分析植被对气候变化(如地表温度变化)的响应。选择了埃塞俄比亚极易发生干旱的12个行政区(第三级行政区划)来调查年代际陆地表面温度变化及其对周围环境,特别是对植被覆盖的影响。使用了1999年至2018年来自三种不同传感器的十幅陆地卫星图像作为基本数据源。地表温度和植被指数的处理数据显示出很强的相关性。较高的LST值表明NDVI较小,反之亦然,并且还确定了高温区域为贫瘠地区,低温区域植被覆盖较多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d0e/6864355/a0d30fb83358/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验