IEEE Trans Biomed Eng. 2024 Feb;71(2):679-688. doi: 10.1109/TBME.2023.3315268. Epub 2024 Jan 19.
Deep neural networks have been recently applied to lesion identification in fluorodeoxyglucose (FDG) positron emission tomography (PET) images, but they typically rely on a large amount of well-annotated data for model training. This is extremely difficult to achieve for neuroendocrine tumors (NETs), because of low incidence of NETs and expensive lesion annotation in PET images. The objective of this study is to design a novel, adaptable deep learning method, which uses no real lesion annotations but instead low-cost, list mode-simulated data, for hepatic lesion detection in real-world clinical NET PET images.
We first propose a region-guided generative adversarial network (RG-GAN) for lesion-preserved image-to-image translation. Then, we design a specific data augmentation module for our list-mode simulated data and incorporate this module into the RG-GAN to improve model training. Finally, we combine the RG-GAN, the data augmentation module and a lesion detection neural network into a unified framework for joint-task learning to adaptatively identify lesions in real-world PET data.
The proposed method outperforms recent state-of-the-art lesion detection methods in real clinical Ga-DOTATATE PET images, and produces very competitive performance with the target model that is trained with real lesion annotations.
With RG-GAN modeling and specific data augmentation, we can obtain good lesion detection performance without using any real data annotations.
This study introduces an adaptable deep learning method for hepatic lesion identification in NETs, which can significantly reduce human effort for data annotation and improve model generalizability for lesion detection with PET imaging.
深度神经网络最近已被应用于氟脱氧葡萄糖(FDG)正电子发射断层扫描(PET)图像中的病变识别,但它们通常依赖于大量经过良好注释的数据进行模型训练。对于神经内分泌肿瘤(NETs)来说,这是极其困难的,因为 NETs 的发病率低,并且 PET 图像中的病变注释成本高昂。本研究的目的是设计一种新颖的、适应性强的深度学习方法,该方法不使用真实的病变注释,而是使用低成本的列表模式模拟数据,用于在真实临床 NET PET 图像中检测肝脏病变。
我们首先提出了一种区域引导生成对抗网络(RG-GAN)用于病变保留的图像到图像转换。然后,我们为列表模式模拟数据设计了一个特定的数据增强模块,并将该模块集成到 RG-GAN 中,以改善模型训练。最后,我们将 RG-GAN、数据增强模块和病变检测神经网络结合到一个统一的框架中,进行联合任务学习,以自适应地识别真实 PET 数据中的病变。
所提出的方法在真实的临床 Ga-DOTATATE PET 图像中优于最近的最先进的病变检测方法,并与使用真实病变注释进行训练的目标模型产生了非常有竞争力的性能。
通过 RG-GAN 建模和特定的数据增强,我们可以在不使用任何真实数据注释的情况下获得良好的病变检测性能。
本研究介绍了一种适用于 NET 中肝脏病变识别的适应性深度学习方法,它可以显著减少数据注释的人工工作量,并提高模型对 PET 成像中病变检测的泛化能力。