Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
Department of Genetics, Stanford University, Stanford, CA 94305, USA.
Science. 2023 Sep 15;381(6663):1182-1189. doi: 10.1126/science.adg9288. Epub 2023 Sep 14.
Lysosomes critically rely on bis(monoacylglycero)phosphate (BMP) to stimulate lipid catabolism, cholesterol homeostasis, and lysosomal function. Alterations in BMP levels in monogenic and complex neurodegeneration suggest an essential function in human health. However, the site and mechanism responsible for BMP synthesis have been subject to debate for decades. Here, we report that the Batten disease gene product CLN5 is the elusive BMP synthase (BMPS). BMPS-deficient cells exhibited a massive accumulation of the BMP synthesis precursor lysophosphatidylglycerol (LPG), depletion of BMP species, and dysfunctional lipid metabolism. Mechanistically, we found that BMPS mediated synthesis through an energy-independent base exchange reaction between two LPG molecules with increased activity on BMP-laden vesicles. Our study elucidates BMP biosynthesis and reveals an anabolic function of late endosomes/lysosomes.
溶酶体严重依赖双(单酰基甘油)磷酸(BMP)来刺激脂质分解代谢、胆固醇动态平衡和溶酶体功能。单基因和复杂神经退行性疾病中 BMP 水平的改变表明其在人类健康中具有重要功能。然而,BMP 合成的部位和机制几十年来一直存在争议。在这里,我们报告巴滕病基因产物 CLN5 是难以捉摸的 BMP 合成酶(BMPS)。BMPS 缺陷细胞表现出大量的 BMP 合成前体溶血磷脂酰甘油(LPG)的积累、BMP 物质的耗竭以及脂质代谢功能障碍。从机制上讲,我们发现 BMPS 通过两个 LPG 分子之间的能量独立碱基交换反应介导合成,该反应在富含 BMP 的囊泡上具有更高的活性。我们的研究阐明了 BMP 的生物合成,并揭示了晚期内涵体/溶酶体的合成代谢功能。