Suppr超能文献

明胶类型对电纺纳米纤维理化性质的影响。

Influence of gelatin type on physicochemical properties of electrospun nanofibers.

作者信息

de Farias Bruna Silva, Rizzi Francisca Zuchoski, Ribeiro Eduardo Silveira, Diaz Patrícia Silva, Sant'Anna Cadaval Junior Tito Roberto, Dotto Guilherme Luiz, Khan Mohammad Rizwan, Manoharadas Salim, de Almeida Pinto Luiz Antonio, Dos Reis Glaydson Simões

机构信息

School of Chemistry and Food, Federal University of Rio Grande (FURG), km 8 Itália Avenue, Rio Grande, RS, 96203-900, Brazil.

Biotechnology Unit, Technology Development Center, Federal University of Pelotas (UFPEL), Eliseu Maciel, Capão do Leão, 96010-610, Brazil.

出版信息

Sci Rep. 2023 Sep 14;13(1):15195. doi: 10.1038/s41598-023-42472-9.

Abstract

This study explores the fabrication of nanofibers using different types of gelatins, including bovine, porcine, and fish gelatins. The gelatins exhibited distinct molecular weights and apparent viscosity values, leading to different entanglement behavior and nanofiber production. The electrospinning technique produced nanofibers with diameters from 47 to 274 nm. The electrospinning process induced conformational changes, reducing the overall crystallinity of the gelatin samples. However, porcine gelatin nanofibers exhibited enhanced molecular ordering. These findings highlight the potential of different gelatin types to produce nanofibers with distinct physicochemical properties. Overall, this study sheds light on the relationship between gelatin properties, electrospinning process conditions, and the resulting nanofiber characteristics, providing insights for tailored applications in various fields.

摘要

本研究探索了使用不同类型明胶(包括牛明胶、猪明胶和鱼明胶)制备纳米纤维的方法。这些明胶呈现出不同的分子量和表观粘度值,导致了不同的缠结行为和纳米纤维产量。静电纺丝技术制备出了直径为47至274纳米的纳米纤维。静电纺丝过程引发了构象变化,降低了明胶样品的整体结晶度。然而,猪明胶纳米纤维表现出增强的分子有序性。这些发现突出了不同类型明胶制备具有独特物理化学性质的纳米纤维的潜力。总体而言,本研究揭示了明胶性质、静电纺丝工艺条件与所得纳米纤维特性之间的关系,为各个领域的定制应用提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7001/10502060/989f86b4de7f/41598_2023_42472_Fig1_HTML.jpg

相似文献

1
Influence of gelatin type on physicochemical properties of electrospun nanofibers.
Sci Rep. 2023 Sep 14;13(1):15195. doi: 10.1038/s41598-023-42472-9.
2
The Influence of Gamma Radiation on Different Gelatin Nanofibers and Gelatins.
Gels. 2024 Mar 26;10(4):226. doi: 10.3390/gels10040226.
4
Fabrication of Gelatin Nanofibers by Electrospinning-Mixture of Gelatin and Polyvinyl Alcohol.
Polymers (Basel). 2022 Jun 27;14(13):2610. doi: 10.3390/polym14132610.
5
Fish Scale Gelatin Nanofibers with and Lavandula latifolia Essential Oils for Bioactive Wound-Healing Dressings.
Pharmaceutics. 2023 Nov 28;15(12):2692. doi: 10.3390/pharmaceutics15122692.
6
Characterization of the produced electrospun fish gelatin nanofiber containing fucoxanthin.
Food Sci Biotechnol. 2022 Nov 5;32(3):329-339. doi: 10.1007/s10068-022-01197-7. eCollection 2023 Mar.
7
Fabrication, Characterization, and Biological Evaluation of Airbrushed Gelatin Nanofibers.
ACS Appl Bio Mater. 2019 Dec 16;2(12):5340-5348. doi: 10.1021/acsabm.9b00636. Epub 2019 Oct 31.
8
Fabrication of an ultrafine fish gelatin nanofibrous web from an aqueous solution by electrospinning.
Int J Biol Macromol. 2017 Sep;102:1092-1103. doi: 10.1016/j.ijbiomac.2017.04.087. Epub 2017 Apr 25.
9
Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats.
Mater Sci Eng C Mater Biol Appl. 2017 Sep 1;78:218-229. doi: 10.1016/j.msec.2017.04.095. Epub 2017 Apr 18.
10
A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning.
Colloids Surf B Biointerfaces. 2016 Oct 1;146:632-41. doi: 10.1016/j.colsurfb.2016.07.009. Epub 2016 Jul 7.

引用本文的文献

1
Controlled Release of D-Limonene from Biodegradable Films with Enzymatic Treatment.
Polymers (Basel). 2025 Aug 17;17(16):2238. doi: 10.3390/polym17162238.
2
Origin-Dependent Molecular Ordering in Gelatin and Its Impact on Electrospun Nanofiber.
Polymers (Basel). 2025 Aug 14;17(16):2219. doi: 10.3390/polym17162219.
3
Gelatin Adsorption onto Cellulose Nanocrystals Surfaces at Different pH: A QCM-D Study.
Langmuir. 2025 Jun 24;41(24):15319-15330. doi: 10.1021/acs.langmuir.5c00795. Epub 2025 Jun 10.

本文引用的文献

1
Recent Advances in Centrifugal Spinning and Their Applications in Tissue Engineering.
Polymers (Basel). 2023 Mar 1;15(5):1253. doi: 10.3390/polym15051253.
2
Antimicrobial Activity of Gelatin Nanofibers Enriched by Essential Oils against and .
Nanomaterials (Basel). 2023 Feb 24;13(5):844. doi: 10.3390/nano13050844.
6
Bovidae-based gelatin: Extractions method, physicochemical and functional properties, applications, and future trends.
Compr Rev Food Sci Food Saf. 2022 Jul;21(4):3153-3176. doi: 10.1111/1541-4337.12967. Epub 2022 May 31.
7
Gelatin nanofiber mats with Lipofectamine/plasmid DNA complexes for in vitro genome editing.
Colloids Surf B Biointerfaces. 2022 Aug;216:112561. doi: 10.1016/j.colsurfb.2022.112561. Epub 2022 May 11.
8
Chitosan-based nanofibers for enzyme immobilization.
Int J Biol Macromol. 2021 Jul 31;183:1959-1970. doi: 10.1016/j.ijbiomac.2021.05.214. Epub 2021 Jun 6.
9
Macroporous scaffold surface modified with biological macromolecules and piroxicam-loaded gelatin nanofibers toward meniscus cartilage repair.
Int J Biol Macromol. 2021 Jul 31;183:1327-1345. doi: 10.1016/j.ijbiomac.2021.04.151. Epub 2021 Apr 29.
10
Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering.
Polymers (Basel). 2020 Sep 28;12(10):2230. doi: 10.3390/polym12102230.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验