Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
Nat Struct Mol Biol. 2023 Nov;30(11):1686-1694. doi: 10.1038/s41594-023-01099-0. Epub 2023 Sep 14.
In the respiratory chain, NADH oxidation is coupled to ion translocation across the membrane to build up an electrochemical gradient. In the human pathogen Vibrio cholerae, the sodium-pumping NADH:quinone oxidoreductase (Na-NQR) generates a sodium gradient by a so far unknown mechanism. Here we show that ion pumping in Na-NQR is driven by large conformational changes coupling electron transfer to ion translocation. We have determined a series of cryo-EM and X-ray structures of the Na-NQR that represent snapshots of the catalytic cycle. The six subunits NqrA, B, C, D, E, and F of Na-NQR harbor a unique set of cofactors that shuttle the electrons from NADH twice across the membrane to quinone. The redox state of a unique intramembranous [2Fe-2S] cluster orchestrates the movements of subunit NqrC, which acts as an electron transfer switch. We propose that this switching movement controls the release of Na from a binding site localized in subunit NqrB.
在呼吸链中,NADH 的氧化与跨膜的离子易位耦联,以建立电化学梯度。在人类病原体霍乱弧菌中,钠离子泵 NADH:醌氧化还原酶(Na-NQR)通过一种迄今为止未知的机制产生钠离子梯度。在这里,我们表明 Na-NQR 中的离子泵送是由电子传递与离子易位偶联的大构象变化驱动的。我们已经确定了一系列 Na-NQR 的冷冻电镜和 X 射线结构,它们代表了催化循环的快照。Na-NQR 的六个亚基 NqrA、B、C、D、E 和 F 拥有一组独特的辅因子,它们将电子从 NADH 两次穿过膜转移到醌。一个独特的跨膜 [2Fe-2S] 簇的氧化还原状态协调亚基 NqrC 的运动,它充当电子转移开关。我们提出,这种开关运动控制着结合在亚基 NqrB 中的 Na 的释放。