Suppr超能文献

2020-2021 年玉米 GxE 项目在基因组到田间倡议内的田间季。

2020-2021 field seasons of Maize GxE project within the Genomes to Fields Initiative.

机构信息

Department of Agronomy, University of Wisconsin - Madison, Madison, WI, 53706, USA.

Iowa Corn Promotion Board, Johnston, IA, 50131, USA.

出版信息

BMC Res Notes. 2023 Sep 14;16(1):219. doi: 10.1186/s13104-023-06430-y.

Abstract

OBJECTIVES

This release note describes the Maize GxE project datasets within the Genomes to Fields (G2F) Initiative. The Maize GxE project aims to understand genotype by environment (GxE) interactions and use the information collected to improve resource allocation efficiency and increase genotype predictability and stability, particularly in scenarios of variable environmental patterns. Hybrids and inbreds are evaluated across multiple environments and phenotypic, genotypic, environmental, and metadata information are made publicly available.

DATA DESCRIPTION

The datasets include phenotypic data of the hybrids and inbreds evaluated in 30 locations across the US and one location in Germany in 2020 and 2021, soil and climatic measurements and metadata information for all environments (combination of year and location), ReadMe, and description files for each data type. A set of common hybrids is present in each environment to connect with previous evaluations. Each environment had a collaborator responsible for collecting and submitting the data, the GxE coordination team combined all the collected information and removed obvious erroneous data. Collaborators received the combined data to use, verify and declare that the data generated in their own environments was accurate. Combined data is released to the public with minimal filtering to maintain fidelity to the original data.

摘要

目的

本发行说明介绍了基因组到田间(G2F)计划中的玉米 GxE 项目数据集。玉米 GxE 项目旨在了解基因型与环境(GxE)的相互作用,并利用收集到的信息来提高资源分配效率,提高基因型的可预测性和稳定性,特别是在环境模式变化的情况下。杂种和自交系在多个环境中进行评估,并公开提供表型、基因型、环境和元数据信息。

数据描述

这些数据集包括 2020 年和 2021 年在美国 30 个地点和德国 1 个地点评估的杂种和自交系的表型数据、所有环境(年份和地点的组合)的土壤和气候测量值以及元数据信息、ReadMe 和每个数据类型的描述文件。在每个环境中都有一组常见的杂种与以前的评估相连接。每个环境都有一个负责收集和提交数据的合作者,GxE 协调团队将所有收集到的信息组合在一起,并删除明显的错误数据。合作者收到组合数据后,可以使用、验证并声明他们在自己环境中生成的数据是准确的。组合数据以最小的筛选发布到公共领域,以保持对原始数据的保真度。

相似文献

1
2020-2021 field seasons of Maize GxE project within the Genomes to Fields Initiative.
BMC Res Notes. 2023 Sep 14;16(1):219. doi: 10.1186/s13104-023-06430-y.
2
2018-2019 field seasons of the Maize Genomes to Fields (G2F) G x E project.
BMC Genom Data. 2023 May 25;24(1):29. doi: 10.1186/s12863-023-01129-2.
3
Genomes to Fields 2022 Maize genotype by Environment Prediction Competition.
BMC Res Notes. 2023 Jul 17;16(1):148. doi: 10.1186/s13104-023-06421-z.
8
Genomic prediction applied to multiple traits and environments in second season maize hybrids.
Heredity (Edinb). 2020 Aug;125(1-2):60-72. doi: 10.1038/s41437-020-0321-0. Epub 2020 May 29.
10
Genomic prediction and association mapping of maize grain yield in multi-environment trials based on reaction norm models.
Front Genet. 2023 Aug 31;14:1221751. doi: 10.3389/fgene.2023.1221751. eCollection 2023.

引用本文的文献

2
Improving plant breeding through AI-supported data integration.
Theor Appl Genet. 2025 Jun 2;138(6):132. doi: 10.1007/s00122-025-04910-2.
3
Assessing the Impact of Yield Plasticity on Hybrid Performance in Maize.
Physiol Plant. 2025 May-Jun;177(3):e70278. doi: 10.1111/ppl.70278.
4
Leveraging Automated Machine Learning for Environmental Data-Driven Genetic Analysis and Genomic Prediction in Maize Hybrids.
Adv Sci (Weinh). 2025 May;12(17):e2412423. doi: 10.1002/advs.202412423. Epub 2025 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验