Suppr超能文献

高通量多光谱航空图像的时空建模提高了杂交玉米农艺性状的基因组预测。

Spatio-temporal modeling of high-throughput multispectral aerial images improves agronomic trait genomic prediction in hybrid maize.

机构信息

Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.

United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA.

出版信息

Genetics. 2024 May 7;227(1). doi: 10.1093/genetics/iyae037.

Abstract

Design randomizations and spatial corrections have increased understanding of genotypic, spatial, and residual effects in field experiments, but precisely measuring spatial heterogeneity in the field remains a challenge. To this end, our study evaluated approaches to improve spatial modeling using high-throughput phenotypes (HTP) via unoccupied aerial vehicle (UAV) imagery. The normalized difference vegetation index was measured by a multispectral MicaSense camera and processed using ImageBreed. Contrasting to baseline agronomic trait spatial correction and a baseline multitrait model, a two-stage approach was proposed. Using longitudinal normalized difference vegetation index data, plot level permanent environment effects estimated spatial patterns in the field throughout the growing season. Normalized difference vegetation index permanent environment were separated from additive genetic effects using 2D spline, separable autoregressive models, or random regression models. The Permanent environment were leveraged within agronomic trait genomic best linear unbiased prediction either modeling an empirical covariance for random effects, or by modeling fixed effects as an average of permanent environment across time or split among three growth phases. Modeling approaches were tested using simulation data and Genomes-to-Fields hybrid maize (Zea mays L.) field experiments in 2015, 2017, 2019, and 2020 for grain yield, grain moisture, and ear height. The two-stage approach improved heritability, model fit, and genotypic effect estimation compared to baseline models. Electrical conductance and elevation from a 2019 soil survey significantly improved model fit, while 2D spline permanent environment were most strongly correlated with the soil parameters. Simulation of field effects demonstrated improved specificity for random regression models. In summary, the use of longitudinal normalized difference vegetation index measurements increased experimental accuracy and understanding of field spatio-temporal heterogeneity.

摘要

设计随机化和空间校正增加了对田间试验中基因型、空间和残余效应的理解,但精确测量田间空间异质性仍然是一个挑战。为此,我们的研究评估了通过无人机 (UAV) 图像使用高通量表型 (HTP) 改进空间建模的方法。多光谱 MicaSense 相机测量归一化差异植被指数,并使用 ImageBreed 进行处理。与基线农艺性状空间校正和基线多性状模型相比,提出了两阶段方法。使用纵向归一化差异植被指数数据,通过 2D 样条、可分离自回归模型或随机回归模型估计整个生长季节田间的斑块水平永久环境效应的空间模式。使用 2D 样条、可分离自回归模型或随机回归模型将归一化差异植被指数永久环境与加性遗传效应分离。在农艺性状基因组最佳线性无偏预测中利用永久环境,要么为随机效应建模经验协方差,要么将固定效应建模为永久环境在时间上的平均值或在三个生长阶段之间进行划分。使用模拟数据和 2015 年、2017 年、2019 年和 2020 年的基因组到田间杂交玉米(Zea mays L.)田间试验测试了建模方法,用于测试产量、籽粒水分和穗高的遗传力、模型拟合和基因型效应估计。与基线模型相比,两阶段方法提高了遗传力、模型拟合和基因型效应估计。2019 年土壤调查的电导率和海拔高度显著提高了模型拟合度,而 2D 样条永久环境与土壤参数的相关性最强。田间效应的模拟表明,随机回归模型的特异性得到了提高。总之,纵向归一化差异植被指数测量的使用提高了实验精度和对田间时空异质性的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ee/11075545/8802b08939b1/iyae037f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验