Suppr超能文献

通过配合力模型利用气候信息改进基因组到田间玉米项目中产量的基因组预测

Utility of Climatic Information via Combining Ability Models to Improve Genomic Prediction for Yield Within the Genomes to Fields Maize Project.

作者信息

Jarquin Diego, de Leon Natalia, Romay Cinta, Bohn Martin, Buckler Edward S, Ciampitti Ignacio, Edwards Jode, Ertl David, Flint-Garcia Sherry, Gore Michael A, Graham Christopher, Hirsch Candice N, Holland James B, Hooker David, Kaeppler Shawn M, Knoll Joseph, Lee Elizabeth C, Lawrence-Dill Carolyn J, Lynch Jonathan P, Moose Stephen P, Murray Seth C, Nelson Rebecca, Rocheford Torbert, Schnable James C, Schnable Patrick S, Smith Margaret, Springer Nathan, Thomison Peter, Tuinstra Mitch, Wisser Randall J, Xu Wenwei, Yu Jianming, Lorenz Aaron

机构信息

Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States.

Department of Agronomy, University of Wisconsin, Madison, WI, United States.

出版信息

Front Genet. 2021 Mar 8;11:592769. doi: 10.3389/fgene.2020.592769. eCollection 2020.

Abstract

Genomic prediction provides an efficient alternative to conventional phenotypic selection for developing improved cultivars with desirable characteristics. New and improved methods to genomic prediction are continually being developed that attempt to deal with the integration of data types beyond genomic information. Modern automated weather systems offer the opportunity to capture continuous data on a range of environmental parameters at specific field locations. In principle, this information could characterize training and target environments and enhance predictive ability by incorporating weather characteristics as part of the genotype-by-environment (G×E) interaction component in prediction models. We assessed the usefulness of including weather data variables in genomic prediction models using a naïve environmental kinship model across 30 environments comprising the Genomes to Fields (G2F) initiative in 2014 and 2015. Specifically four different prediction scenarios were evaluated (i) tested genotypes in observed environments; (ii) untested genotypes in observed environments; (iii) tested genotypes in unobserved environments; and (iv) untested genotypes in unobserved environments. A set of 1,481 unique hybrids were evaluated for grain yield. Evaluations were conducted using five different models including main effect of environments; general combining ability (GCA) effects of the maternal and paternal parents modeled using the genomic relationship matrix; specific combining ability (SCA) effects between maternal and paternal parents; interactions between genetic (GCA and SCA) effects and environmental effects; and finally interactions between the genetics effects and environmental covariates. Incorporation of the genotype-by-environment interaction term improved predictive ability across all scenarios. However, predictive ability was not improved through inclusion of naive environmental covariates in G×E models. More research should be conducted to link the observed weather conditions with important physiological aspects in plant development to improve predictive ability through the inclusion of weather data.

摘要

基因组预测为培育具有理想特性的改良品种提供了一种替代传统表型选择的有效方法。不断有新的和改进的基因组预测方法被开发出来,试图处理基因组信息以外的数据类型的整合。现代自动化气象系统提供了在特定田间位置获取一系列环境参数连续数据的机会。原则上,这些信息可以描述训练环境和目标环境,并通过将天气特征作为预测模型中基因型与环境(G×E)互作成分的一部分来提高预测能力。我们使用朴素环境亲缘关系模型,在2014年和2015年包含“基因组到田间”(G2F)计划的30个环境中,评估了在基因组预测模型中纳入气象数据变量的有用性。具体评估了四种不同的预测情景:(i)在观测环境中测试的基因型;(ii)在观测环境中未测试的基因型;(iii)在未观测环境中测试的基因型;(iv)在未观测环境中未测试的基因型。对一组1481个独特的杂交种进行了籽粒产量评估。使用五种不同的模型进行评估,包括环境的主效应;使用基因组关系矩阵建模的母本和父本的一般配合力(GCA)效应;母本和父本之间的特殊配合力(SCA)效应;遗传(GCA和SCA)效应与环境效应之间的互作;最后是遗传效应与环境协变量之间的互作。纳入基因型与环境互作项提高了所有情景下的预测能力。然而,通过在G×E模型中纳入朴素环境协变量并不能提高预测能力。应该进行更多的研究,将观测到的天气条件与植物发育中的重要生理方面联系起来,通过纳入气象数据来提高预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d682/7982677/6907da4c8ad2/fgene-11-592769-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验