Suppr超能文献

用于二氧化碳捕获的亚50纳米氨基苯二甲酸锆金属有机框架纳米晶体的原位生长

In Situ Growth of Sub-50-nm Zirconium Aminobenzenedicarboxylate Metal-Organic Framework Nanocrystals for Carbon Dioxide Capture.

作者信息

Luo Liangmei, Xu Chenyu, Shi Wenli, Liu Qian, Ou-Yang Yingying, Qian Jia, Wang Yanqing, Li Qi

机构信息

Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, People's Republic of China.

出版信息

J Phys Chem Lett. 2023 Sep 28;14(38):8437-8443. doi: 10.1021/acs.jpclett.3c02003. Epub 2023 Sep 15.

Abstract

Controlled synthesis of sub-50-nm metal-organic frameworks (MOFs), which are usually called porous coordination polymers, exhibits huge potential applications in gas storage and separation. Herein, surface-confined growth of zirconium aminobenzenedicarboxylate MOF (UIO-66-NH) nanocrystals on polypyrrole hollow spheres (PPyHSs) is achieved through covalently grafted benzene dicarboxylic acid ligands using bridged molecules. PPyHSs modified with ligand molecules prohibit excessive growth of UIO-66-NH nanocrystals on their confined surface, resulting in smaller-sized nanocrystals (<50 nm) and a monolayer UIO-66-NH coating. Benefiting from the homogeneous dispersion of UIO-66-NH nanocrystals with a smaller size (40 ± 10 nm), the as-prepared PPyHSs@UIO-66-NH hybrids with high specific surface area and pore volume exhibit remarkable CO capture performance. Moreover, the time required to reach the maximum CO adsorption capacity shortens with decreasing UIO-66-NH crystals size. As a proof of concept, the proposed covalent grafting strategy can be used for synthesizing sub-50-nm UIO-66-NH nanocrystals for CO capture.

摘要

亚50纳米金属有机框架材料(MOF,通常称为多孔配位聚合物)的可控合成在气体存储和分离方面展现出巨大的潜在应用价值。在此,通过使用桥连分子共价接枝苯二甲酸配体,实现了在聚吡咯空心球(PPyHSs)上表面受限生长氨基苯二甲酸锆MOF(UIO-66-NH)纳米晶体。用配体分子修饰的PPyHSs可阻止UIO-66-NH纳米晶体在其受限表面过度生长,从而得到尺寸更小的纳米晶体(<50纳米)以及单层UIO-66-NH涂层。得益于尺寸较小(40±10纳米)的UIO-66-NH纳米晶体的均匀分散,所制备的具有高比表面积和孔体积的PPyHSs@UIO-66-NH杂化物展现出卓越的CO捕获性能。此外,达到最大CO吸附容量所需的时间随着UIO-66-NH晶体尺寸的减小而缩短。作为概念验证,所提出的共价接枝策略可用于合成用于CO捕获的亚50纳米UIO-66-NH纳米晶体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验