Suppr超能文献

开发和内部验证一种用于慢性前列腺炎(S-CP)的筛选工具。

Development and internal validation of a screening tool for chronic prostatitis (S-CP).

机构信息

Department of Urology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0701, Japan.

Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan.

出版信息

World J Urol. 2023 Oct;41(10):2759-2765. doi: 10.1007/s00345-023-04574-x. Epub 2023 Sep 15.

Abstract

PURPOSE

We developed a simple self-checkable screening tool for chronic prostatitis (S-CP) and internally validated it to encourage men (in the general population) with possible chronic prostatitis to consult urologists.

METHODS

The expert panel proposed the S-CP, which comprises three domains: Area of pain or discomfort (6 components), accompanying Symptom (6 components), and Trigger for symptom flares (4 components). We employed logistic regression to predict chronic prostatitis prevalence with the S-CP. We evaluated the predictive performance using data from a representative national survey of Japanese men aged 20 to 84. We calculated the optimism-adjusted area under the curve using bootstrapping. We assessed sensitivity/specificity, likelihood ratio, and predictive value for each cutoff of the S-CP.

RESULTS

Data were collected for 5,010 men-71 (1.4%) had a chronic prostatitis diagnosis. The apparent and adjusted area under the curve for the S-CP was 0.765 [95% confidence interval (CI) 0.702, 0.829] and 0.761 (0.696, 0.819), respectively. When the cutoff was two of the three domains being positive, sensitivity and specificity were 62.0% (95% CI 49.7, 73.2) and 85.4% (95% CI 84.4, 86.4), respectively. The positive/negative likelihood ratios were 4.2 (95% CI 3.5, 5.2) and 0.45 (95% CI 0.33, 0.60), respectively. The positive/negative predictive values were 5.7 (95% CI 4.2, 7.6) and 99.4 (95% CI 99.1, 99.6), respectively.

CONCLUSION

The reasonable predictive performance of the S-CP indicated that patients (in the general population) with chronic prostatitis were screened as a first step. Further research would develop another tool for diagnostic support in actual clinical settings.

摘要

目的

我们开发了一种简单的慢性前列腺炎自我检查工具(S-CP),并对其进行了内部验证,以鼓励可能患有慢性前列腺炎的男性(普通人群)咨询泌尿科医生。

方法

专家组提出了 S-CP,它由三个领域组成:疼痛或不适区域(6 个组成部分)、伴随症状(6 个组成部分)和症状发作的诱因(4 个组成部分)。我们采用逻辑回归来预测 S-CP 下慢性前列腺炎的患病率。我们使用来自日本 20 至 84 岁男性的代表性全国性调查数据来评估预测性能。我们使用自举法计算了曲线下面积的乐观调整值。我们评估了每个 S-CP 截止值的敏感性/特异性、似然比和预测值。

结果

共收集了 5010 名男性的数据-71 名(1.4%)患有慢性前列腺炎诊断。S-CP 的明显和调整后的曲线下面积分别为 0.765(95%置信区间 0.702,0.829)和 0.761(0.696,0.819)。当三个域中的两个域为阳性时,S-CP 的灵敏度和特异性分别为 62.0%(95%置信区间 49.7%,73.2%)和 85.4%(95%置信区间 84.4%,86.4%)。阳性/阴性似然比分别为 4.2(95%置信区间 3.5,5.2)和 0.45(95%置信区间 0.33,0.60)。阳性/阴性预测值分别为 5.7(95%置信区间 4.2,7.6)和 99.4(95%置信区间 99.1%,99.6%)。

结论

S-CP 的合理预测性能表明,慢性前列腺炎患者(普通人群)可以作为第一步进行筛查。进一步的研究将开发另一种工具,用于实际临床环境中的诊断支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d121/10582131/22fd9454282a/345_2023_4574_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验