Suppr超能文献

利用混合密度回归评估人类基因组中近期适应的存在。

Assessing the Presence of Recent Adaptation in the Human Genome With Mixture Density Regression.

机构信息

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA.

Department of Ecology, University of Granada, Granada, Spain.

出版信息

Genome Biol Evol. 2023 Oct 6;15(10). doi: 10.1093/gbe/evad170.

Abstract

How much genome differences between species reflect neutral or adaptive evolution is a central question in evolutionary genomics. In humans and other mammals, the presence of adaptive versus neutral genomic evolution has proven particularly difficult to quantify. The difficulty notably stems from the highly heterogeneous organization of mammalian genomes at multiple levels (functional sequence density, recombination, etc.) which complicates the interpretation and distinction of adaptive versus neutral evolution signals. In this study, we introduce mixture density regressions (MDRs) for the study of the determinants of recent adaptation in the human genome. MDRs provide a flexible regression model based on multiple Gaussian distributions. We use MDRs to model the association between recent selection signals and multiple genomic factors likely to affect the occurrence/detection of positive selection, if the latter was present in the first place to generate these associations. We find that an MDR model with two Gaussian distributions provides an excellent fit to the genome-wide distribution of a common sweep summary statistic (integrated haplotype score), with one of the two distributions likely enriched in positive selection. We further find several factors associated with signals of recent adaptation, including the recombination rate, the density of regulatory elements in immune cells, GC content, gene expression in immune cells, the density of mammal-wide conserved elements, and the distance to the nearest virus-interacting gene. These results support the presence of strong positive selection in recent human evolution and highlight MDRs as a powerful tool to make sense of signals of recent genomic adaptation.

摘要

物种间的基因组差异有多少反映了中性或适应性进化,这是进化基因组学的一个核心问题。在人类和其他哺乳动物中,证明适应性与中性基因组进化之间的存在尤其具有挑战性。这种困难主要源于哺乳动物基因组在多个层面上的高度异质组织(功能序列密度、重组等),这使得适应性与中性进化信号的解释和区分变得复杂。在这项研究中,我们引入了混合密度回归(MDR)来研究人类基因组中近期适应的决定因素。MDR 提供了一种基于多个高斯分布的灵活回归模型。我们使用 MDR 来模拟近期选择信号与多个基因组因素之间的关联,这些因素可能会影响阳性选择的发生/检测,如果阳性选择首先出现在基因组中以产生这些关联。我们发现,具有两个高斯分布的 MDR 模型非常适合常见的全基因组扫描汇总统计量(整合单倍型得分)的分布,其中两个分布之一可能富含阳性选择。我们进一步发现了几个与近期适应信号相关的因素,包括重组率、免疫细胞中调控元件的密度、GC 含量、免疫细胞中的基因表达、哺乳动物广泛保守元件的密度以及与最近的病毒相互作用基因的距离。这些结果支持人类近期进化中存在强烈的阳性选择,并强调 MDR 是理解近期基因组适应信号的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a549/10563788/ad8e6e848d85/evad170f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验