Suppr超能文献

应用钆延迟增强磁共振成像、电图电压和传导速度定位心房基质的差异:一项使用持续性心房颤动患者一致解剖参考框架的队列研究。

Differences in atrial substrate localization using late gadolinium enhancement-magnetic resonance imaging, electrogram voltage, and conduction velocity: a cohort study using a consistent anatomical reference frame in patients with persistent atrial fibrillation.

机构信息

Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, Karlsruhe 76131, Germany.

Department of Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg, Germany.

出版信息

Europace. 2023 Aug 2;25(9). doi: 10.1093/europace/euad278.

Abstract

AIMS

Electro-anatomical voltage, conduction velocity (CV) mapping, and late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) have been correlated with atrial cardiomyopathy (ACM). However, the comparability between these modalities remains unclear. This study aims to (i) compare pathological substrate extent and location between current modalities, (ii) establish spatial histograms in a cohort, (iii) develop a new estimated optimized image intensity threshold (EOIIT) for LGE-MRI identifying patients with ACM, (iv) predict rhythm outcome after pulmonary vein isolation (PVI) for persistent atrial fibrillation (AF).

METHODS AND RESULTS

Thirty-six ablation-naive persistent AF patients underwent LGE-MRI and high-definition electro-anatomical mapping in sinus rhythm. Late gadolinium enhancement areas were classified using the UTAH, image intensity ratio (IIR >1.20), and new EOIIT method for comparison to low-voltage substrate (LVS) and slow conduction areas <0.2 m/s. Receiver operating characteristic analysis was used to determine LGE thresholds optimally matching LVS. Atrial cardiomyopathy was defined as LVS extent ≥5% of the left atrium (LA) surface at <0.5 mV. The degree and distribution of detected pathological substrate (percentage of individual LA surface are) varied significantly (P < 0.001) across the mapping modalities: 10% (interquartile range 0-14%) of the LA displayed LVS <0.5 mV vs. 7% (0-12%) slow conduction areas <0.2 m/s vs. 15% (8-23%) LGE with the UTAH method vs. 13% (2-23%) using IIR >1.20, with most discrepancies on the posterior LA. Optimized image intensity thresholds and each patient's mean blood pool intensity correlated linearly (R2 = 0.89, P < 0.001). Concordance between LGE-MRI-based and LVS-based ACM diagnosis improved with the novel EOIIT applied at the anterior LA [83% sensitivity, 79% specificity, area under the curve (AUC): 0.89] in comparison to the UTAH method (67% sensitivity, 75% specificity, AUC: 0.81) and IIR >1.20 (75% sensitivity, 62% specificity, AUC: 0.67).

CONCLUSION

Discordances in detected pathological substrate exist between LVS, CV, and LGE-MRI in the LA, irrespective of the LGE detection method. The new EOIIT method improves concordance of LGE-MRI-based ACM diagnosis with LVS in ablation-naive AF patients but discrepancy remains particularly on the posterior wall. All methods may enable the prediction of rhythm outcomes after PVI in patients with persistent AF.

摘要

目的

电解剖电压、传导速度(CV)映射和晚期钆增强(LGE)磁共振成像(MRI)已与心房心肌病(ACM)相关。然而,这些模式之间的可比性尚不清楚。本研究旨在:(i)比较当前模式之间的病理基质程度和位置;(ii)在队列中建立空间直方图;(iii)为 LGE-MRI 开发新的估计优化图像强度阈值(EOIIT),以识别 ACM 患者;(iv)预测持续性心房颤动(AF)患者肺静脉隔离(PVI)后的节律结果。

方法和结果

36 例消融初治持续性 AF 患者在窦性心律下接受 LGE-MRI 和高清晰度电解剖映射。使用 UTAH、图像强度比(IIR >1.20)和新的 EOIIT 方法将晚期钆增强区域分类,以与低电压基质(LVS)和<0.2 m/s 的慢传导区域进行比较。使用接收器工作特征分析来确定最佳匹配 LVS 的 LGE 阈值。定义 LVS 程度<0.5 mV 的左心房(LA)表面≥5%为心房心肌病。检测到的病理基质的程度和分布在不同的映射模式之间差异显著(P < 0.001):10%(四分位距 0-14%)的 LA 显示 LVS <0.5 mV,7%(0-12%)的慢传导区域<0.2 m/s,15%(8-23%)的 LGE 采用 UTAH 方法,13%(2-23%)采用 IIR >1.20,LA 后部差异最大。优化的图像强度阈值和每位患者的平均血池强度呈线性相关(R2=0.89,P < 0.001)。与 UTAH 方法(敏感性 67%,特异性 75%,曲线下面积(AUC):0.81)和 IIR >1.20(敏感性 75%,特异性 62%,AUC:0.67)相比,新的 EOIIT 应用于 LA 前部可提高基于 LGE-MRI 和 LVS 的 ACM 诊断的一致性[敏感性 83%,特异性 79%,AUC:0.89]。

结论

LA 中的 LVS、CV 和 LGE-MRI 之间存在检测到的病理基质的差异,无论 LGE 检测方法如何。新的 EOIIT 方法可提高 LGE-MRI 基础 ACM 诊断与 LVS 在消融初治 AF 患者中的一致性,但后壁差异仍然存在。所有方法都可以预测持续性 AF 患者 PVI 后的节律结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a577/10533207/174cf68d4c4d/euad278_ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验