Li Hu, Pan Xiaoduo, Peng Xiaoqing, Washakh Rana Muhammad Ali, Zheng Min, Nie Xiaowei
National Tibetan Plateau Data Center (TPDC), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
National Tibetan Plateau Data Center (TPDC), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China.
Sci Total Environ. 2023 Dec 20;905:167074. doi: 10.1016/j.scitotenv.2023.167074. Epub 2023 Sep 13.
In the context of global warming, the soil freeze depth (SFD) over the Tibetan Plateau (TP) has undergone significant changes, with a series of profound impacts on the hydrological cycle and ecosystem. The complex terrains and high elevations of the TP pose great challenges in data acquisition, presenting difficulties for studying SFD in this region. This study employs Stefan's solution and downscaled datasets from the Coupled Model Intercomparison Project Phase 6 (CMIP6) to simulate the future SFDs over the TP. The changing trends of the projected SFDs under different Shared Socio-economic Pathways (SSP) scenarios are investigated, and; the responses of SFDs to potential climatic factors, such as temperature and precipitation, are analyzed. The potential impacts of SFD changes on eco-hydrological processes are analyzed based on the relationships between SFDs, the distribution of frozen ground, soil moisture, and the Normalized Difference Vegetation Index (NDVI). Results show that the projected SFDs of the TP are estimated to decrease at rates of 0.100 cm/yr under the SSP126, 0.330 cm/yr under the SSP245, 0.565 cm/yr under the SSP370, and 0.750 cm/yr under the SSP585. Additionally, the SFD decreased at a rate of 0.160 cm/yr during the historical period from 1950 to 2014, which was between the decreasing rates of the SSP126 and SSP245 scenarios. The projected SFDs are negatively correlated with air temperature and precipitation, more significant under the higher emissions scenario. The projected decrease in SFDs will significantly impact eco-hydrological processes. A rapid decrease in SFD may lead to a decline in soil moisture content and have adverse impacts on vegetation growth. This research provides valuable insights into the future changes in SFD on the TP and their impacts on eco-hydrological processes.
在全球变暖的背景下,青藏高原的土壤冻结深度发生了显著变化,对水文循环和生态系统产生了一系列深远影响。青藏高原复杂的地形和高海拔给数据获取带来了巨大挑战,为该地区土壤冻结深度的研究带来了困难。本研究采用斯蒂芬解和耦合模式比较计划第六阶段(CMIP6)的降尺度数据集来模拟青藏高原未来的土壤冻结深度。研究了不同共享社会经济路径(SSP)情景下预计土壤冻结深度的变化趋势,并分析了土壤冻结深度对温度和降水等潜在气候因子的响应。基于土壤冻结深度、冻土分布、土壤湿度和归一化植被指数(NDVI)之间的关系,分析了土壤冻结深度变化对生态水文过程的潜在影响。结果表明,在SSP126情景下,青藏高原预计的土壤冻结深度以每年0.100厘米的速度下降;在SSP245情景下,为每年0.330厘米;在SSP370情景下,为每年0.565厘米;在SSP585情景下,为每年0.750厘米。此外,在1950年至2014年的历史时期,土壤冻结深度以每年0.160厘米的速度下降,这一速度介于SSP126和SSP245情景的下降速度之间。预计的土壤冻结深度与气温和降水呈负相关,在高排放情景下更为显著。预计土壤冻结深度的下降将对生态水文过程产生重大影响。土壤冻结深度的快速下降可能导致土壤水分含量下降,并对植被生长产生不利影响。本研究为青藏高原土壤冻结深度的未来变化及其对生态水文过程的影响提供了有价值的见解。